Home
Class 12
MATHS
log(5)5log(4)9log(3)2 simplifies to...

`log_(5)5log_(4)9log_(3)2` simplifies to

A

`2`

B

`1`

C

`5`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \log_{5}(5) \log_{4}(9) \log_{3}(2) \), we will use properties of logarithms. ### Step-by-step Solution: 1. **Simplify \( \log_{5}(5) \)**: \[ \log_{5}(5) = 1 \] Since any logarithm of a number to its own base is 1. 2. **Simplify \( \log_{4}(9) \)**: We can use the change of base formula: \[ \log_{4}(9) = \frac{\log_{e}(9)}{\log_{e}(4)} \] We can express 9 as \( 3^2 \) and 4 as \( 2^2 \): \[ \log_{4}(9) = \frac{\log_{e}(3^2)}{\log_{e}(2^2)} = \frac{2 \log_{e}(3)}{2 \log_{e}(2)} = \frac{\log_{e}(3)}{\log_{e}(2)} \] 3. **Simplify \( \log_{3}(2) \)**: Again, using the change of base formula: \[ \log_{3}(2) = \frac{\log_{e}(2)}{\log_{e}(3)} \] 4. **Combine the results**: Now substituting back into the original expression: \[ \log_{5}(5) \log_{4}(9) \log_{3}(2) = 1 \cdot \frac{\log_{e}(3)}{\log_{e}(2)} \cdot \frac{\log_{e}(2)}{\log_{e}(3)} \] The \( \log_{e}(3) \) and \( \log_{e}(2) \) cancel out: \[ = 1 \] 5. **Final Result**: Therefore, the simplified expression is: \[ \log_{5}(5) \log_{4}(9) \log_{3}(2) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (4) |62 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (5) (Multiple choice questions)|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (fill in the blanks)|14 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

log_(5)4*log_(2)5

The expression (1)/(log_(5)3)+(1)/(log_(6)3)-(1)/(log_(10)3) simplifies to

((log)_(5)5)((log)_(4)9)((log)_(3)2) is equal to 2 b.5 c.1 d.(3)/(2)

The number N=2^(log_(2)3log_(3)4*log_(4)5.......log_(99)100) simplifies to

x=log_(5)3+log_(7)5+log_(9)7

log_10(log_2 3) + log_10(log_3 4) + log_10(log_4 5) + ........ + log_10 (log_1023 1024) simplifies to

log_(2)[log_(4)(log_(10)16^(4)+log_(10)25^(8))] simplifies to :

(log_(5)4)(log_(4)3)(log_(3)2)(log_(2)1) =

det [[log_ (2) 512, log_ (4) 3log_ (3) 8, log_ (3) 9]] xxdet [[log_ (2) 3, log_ (8) 3log_ (3) 4, log_ (3) 4 ]] =