Home
Class 12
MATHS
If log(2)(a+b)+log(2)(c+d) ge4, then the...

If `log_(2)(a+b)+log_(2)(c+d) ge4`, then the minimum value of a+b+c+d is

A

`2`

B

`4`

C

`6`

D

`8`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (4) |62 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (5) (Multiple choice questions)|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (fill in the blanks)|14 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If log_(2)(a+b)+log_(2)(c+d)>=4. Then find the minimum value of the expression a+b+c+d.

If log_(5)(x^(2)+x)-log_(5)(x+1)=2, then the value of x is a.5 b.10 c.25 d.32

If log_(2)x+log_(2)y>=6, then the least value of x+y is 4 (b) 8 (d) 16 (d) 32

Let a,b" and "c are distinct positive numbers,none of them is equal to unity such that log _(b)a .log_(c)a+log_(a)b*log_(c)b+log_(a)c*log_(b)c-log_(b)a sqrt(a)*log_(sqrt(c))b^(1/3)*log_(a)c^(3)=0, then the value of abc is -

Let a=(log_(27)8)/(log_(3)2),b=((1)/(2^(log_(2)5)))((1)/(5^(log_(5)(01)))) and c=(log_(4)27)/(log_(4)3) then the value of (a+b+c), is and c=(log_(4)27)/(log_(4)3)

If log_(2)7= a and log_(3)2=b ," then the value of log_(14)84 is : (A) (1+3b+2ab)/(ab-b) (B) (1+2b+ab)/(b+ab) (C) (1+a+b)/(a+b) (D) (1+b+ab)/(a+ab)

If a=b^(2)=c^(3)=d^(4) then the value of log_(4)(abcd) is

If a=b^(2)=c^(3)=d^(4) then the value of log_(a)(abcd) is

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.

If log_(a)b=1/2,log_(b)c=1/3" and "log_(c)a=(K)/(5) , then the value of K is