Home
Class 12
MATHS
The value of 6+log(3//2)((1)/(3sqrt(2)...

The value of
`6+log_(3//2)((1)/(3sqrt(2))sqrt(4-(1)/(3sqrt(2))sqrt(4-(1)/(3sqrt(2))sqrt(4-(1)/(3sqrt(2)).......))))` is

A

`4`

B

`5`

C

`0`

D

`6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ 6 + \log_{\frac{3}{2}}\left(\frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \ldots}}}\right) \] Let's denote the repeating part as \( t \): \[ t = \frac{1}{3\sqrt{2}} \sqrt{4 - t} \] ### Step 1: Solve for \( t \) To eliminate the square root, we square both sides: \[ t^2 = \left(\frac{1}{3\sqrt{2}}\right)^2 (4 - t) \] This simplifies to: \[ t^2 = \frac{1}{18}(4 - t) \] ### Step 2: Rearranging the equation Multiply both sides by 18 to eliminate the fraction: \[ 18t^2 = 4 - t \] Rearranging gives us: \[ 18t^2 + t - 4 = 0 \] ### Step 3: Solve the quadratic equation Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 18 \), \( b = 1 \), and \( c = -4 \). Calculating the discriminant: \[ b^2 - 4ac = 1^2 - 4 \cdot 18 \cdot (-4) = 1 + 288 = 289 \] Now substituting back into the quadratic formula: \[ t = \frac{-1 \pm \sqrt{289}}{2 \cdot 18} = \frac{-1 \pm 17}{36} \] Calculating the two possible values: 1. \( t = \frac{16}{36} = \frac{4}{9} \) 2. \( t = \frac{-18}{36} = -\frac{1}{2} \) (not valid since \( t \) must be positive) Thus, we have: \[ t = \frac{4}{9} \] ### Step 4: Substitute \( t \) back into the logarithm Now we substitute \( t \) back into the logarithmic expression: \[ 6 + \log_{\frac{3}{2}}\left(\frac{4}{9}\right) \] ### Step 5: Simplifying the logarithm Using the property of logarithms: \[ \log_{\frac{3}{2}}\left(\frac{4}{9}\right) = \log_{\frac{3}{2}}\left(\left(\frac{3}{2}\right)^{-2}\right) = -2 \] ### Step 6: Final calculation Now, we can finalize the expression: \[ 6 + (-2) = 4 \] Thus, the final answer is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (4) |62 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (5) (Multiple choice questions)|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (fill in the blanks)|14 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

The value of 6+log_((3)/(2))((1)/(3sqrt(2))sqrt(4-(1)/(3sqrt(2))sqrt(4-(1)/(3sqrt(2))sqrt(4-(1)/(3sqrt(2))...cdots))))

The value of 6+ log_(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)...)))) is ________.

The value of 6+log_(3//2)(1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)...)))) is

(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))

The value of log_((9)/(4))((1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3)))))...oo) is

The value of 6+(log)_(3/2)[1/(3sqrt(2)) * sqrt{ (4 - 1/(3sqrt(2))) sqrt(4 - 1/(3sqrt(2))....... } is ...............

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+...(1)/(sqrt(99)+sqrt(100))

(3sqrt(2))/(sqrt(6)-sqrt(3))+(2sqrt(3))/(sqrt(6)+2)-(4sqrt(3))/(sqrt(6)-sqrt(2))