Home
Class 12
MATHS
|{:(1,omega,omega^2),(omega,omega^2,1),(...

`|{:(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega):}|`

A

1

B

`omega`

C

`omega^2`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{vmatrix} \] we will follow a systematic approach. ### Step 1: Rewrite the Determinant We can denote the determinant as follows: \[ D = \begin{vmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{vmatrix} \] ### Step 2: Apply Column Operations We will perform a column operation. We will replace the first column \(C_1\) with \(C_1 + C_2 + C_3\): \[ C_1 \to C_1 + C_2 + C_3 \] This gives us: \[ D = \begin{vmatrix} 1 + \omega + \omega^2 & \omega & \omega^2 \\ \omega + \omega^2 + 1 & \omega^2 & 1 \\ \omega^2 + 1 + \omega & 1 & \omega \end{vmatrix} \] ### Step 3: Simplify the First Column Now, we know that \(1 + \omega + \omega^2 = 0\) (this is a property of the cube roots of unity). Therefore, we can simplify the first column: \[ D = \begin{vmatrix} 0 & \omega & \omega^2 \\ 0 & \omega^2 & 1 \\ 0 & 1 & \omega \end{vmatrix} \] ### Step 4: Evaluate the Determinant Since the first column consists entirely of zeros, the determinant evaluates to zero: \[ D = 0 \] ### Final Answer Thus, the value of the determinant is \[ \boxed{0} \] ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

{[(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)] + [(omega,omega^(2),1),(omega^(2),1,omega),(omega,omega^(2),1)]} [(1),(omega),(omega^(2))]

If omega is cube roots of unity, prove that {[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]

Which of the following is a non singular matrix? (A) [(1,a,b+c),(1,b,c+a),(1,c,a+b)] (B) [(1,omega, omega^2),(omega, omega^2,1),(omega^2,1,omega)] where omega is non real and omega^2=1 (C) [(1^2,2^2,3^2),(2^2,3^2,4^2),(3^2,4^2,5^2)] (D) [(0,2,-3),(-2,0,5),(3,-5,0)]

Find the values of the following determinants : (i) |{:(12,3,4),(16,5,0),(21,-1,2):}| (ii) |{:(256,240,219),(240,225,198),(219,198,181):}| (iii) |{:(17,19,24),(6,8,13),(-1,1,6):}| (iv) |{:(67,19,21),(39,13,14),(81,24,26):}| (v) |{:(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),omega,1):}|" where "omega "is a cube root of unity". (iv) |{:(1,x,y),(0,(2pi)/5,sin(pi)/10),(0,sin((2pi)/5),cos(pi)/10):}|

Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega,omega)| where omega is cube root of unity.

Given that [(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)][(k,1,1),(1,1,1),(1,1,1)]=[(0,0,0),(0,0,0),(0,0,0)] then k=

If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. |{:(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega):}|

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |