Home
Class 12
MATHS
If |{:(a-b,b-c,c-a),(x-y,y-z,z-x),(p-q,q...

If `|{:(a-b,b-c,c-a),(x-y,y-z,z-x),(p-q,q-r,r-p):}|` is expressible as `lamda|(a,b,c),(x,y,z),(p,q,r)|` then `lamda` is

A

`-1`

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) such that \[ \left| \begin{array}{ccc} a-b & b-c & c-a \\ x-y & y-z & z-x \\ p-q & q-r & r-p \end{array} \right| = \lambda \left| \begin{array}{ccc} a & b & c \\ x & y & z \\ p & q & r \end{array} \right| \] we will evaluate the left-hand side determinant. ### Step 1: Evaluate the Determinant We denote the left-hand side determinant as \( D \): \[ D = \left| \begin{array}{ccc} a-b & b-c & c-a \\ x-y & y-z & z-x \\ p-q & q-r & r-p \end{array} \right| \] ### Step 2: Apply Column Operations We can simplify this determinant by performing column operations. We will add the second and third columns to the first column: \[ C_1 \rightarrow C_1 + C_2 + C_3 \] This gives us: \[ D = \left| \begin{array}{ccc} (a-b) + (b-c) + (c-a) & b-c & c-a \\ (x-y) + (y-z) + (z-x) & y-z & z-x \\ (p-q) + (q-r) + (r-p) & q-r & r-p \end{array} \right| \] ### Step 3: Simplify the First Column Now, simplifying the first column: 1. For the first row: \[ (a-b) + (b-c) + (c-a) = a - b + b - c + c - a = 0 \] 2. For the second row: \[ (x-y) + (y-z) + (z-x) = x - y + y - z + z - x = 0 \] 3. For the third row: \[ (p-q) + (q-r) + (r-p) = p - q + q - r + r - p = 0 \] Thus, the first column becomes: \[ \left| \begin{array}{ccc} 0 & b-c & c-a \\ 0 & y-z & z-x \\ 0 & q-r & r-p \end{array} \right| \] ### Step 4: Evaluate the Determinant with a Zero Column Since the first column of the determinant is now all zeros, we can conclude that: \[ D = 0 \] ### Step 5: Relate to the Right-Hand Side Now, we have: \[ 0 = \lambda \left| \begin{array}{ccc} a & b & c \\ x & y & z \\ p & q & r \end{array} \right| \] This implies that either \( \lambda = 0 \) or the right-hand side determinant is also zero. ### Conclusion Since we are looking for \( \lambda \) and the determinant on the right-hand side can take any value, the most suitable conclusion is: \[ \lambda = 0 \] Thus, the value of \( \lambda \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

" 1."|[a-b,b-c,c-a],[x-y,y-z,z-x],[p-q,q-r,r-p]|" is equal to "

If A = |(a,b,c),(x,y,z),(p,q,r)| and B = |(q,-b,y),(-p,a,-x),(r,-c,z)| , then

Prove that: |{:(a, b, c), (x, y, z), (p, q, r):}|=|{:(y, b, q), (x, a, p), (z, c, r):}|

Without expanding, prove that : |{:(1+b,b+c,c+a),(p+q,q+r,r+p),(x+y,y+z,z+x),(x+y,y+z,z+x):}|=2|{:(a,b,c),(p,q,r),(x,y,z):}|

If A=[(a,b,c),(x,y,x),(p,q,r)], B=[(q,-b,y),(-p,a,-x),(r,-c,z)] and If A is invertible, then which of the following is not true ?

If A=[(a,b,c),(x,y,z),(p,q,r)] and B=[(q,-b,y),(-p,a,-x),(r,-c,z)] then (A) |A|=|B| (B) |A|=-|B| (C) |A|=2|B| (D) none of these

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If |{:(a-b,b-c,c-a),(x-y,y-z,z-x),(p-q,q-r,r-p):}| is expressible as l...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |