Home
Class 12
MATHS
The value of the determinant |(sinA,cosA...

The value of the determinant `|(sinA,cosA,sin(A+theta)),(sinB,cosB,sin(B+theta)),(sinC,cosC,sin(C+theta))|` is independent of

A

A

B

B

C

C

D

`theta`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} \sin A & \cos A & \sin(A + \theta) \\ \sin B & \cos B & \sin(B + \theta) \\ \sin C & \cos C & \sin(C + \theta) \end{vmatrix} \] we will perform a series of operations on the determinant to simplify it. ### Step 1: Apply Column Operations We will first apply column operations to simplify the determinant. Specifically, we will multiply the first column \(C_1\) by \(\cos \theta\) and the second column \(C_2\) by \(\sin \theta\). \[ D = \begin{vmatrix} \sin A \cos \theta & \cos A \sin \theta & \sin(A + \theta) \\ \sin B \cos \theta & \cos B \sin \theta & \sin(B + \theta) \\ \sin C \cos \theta & \cos C \sin \theta & \sin(C + \theta) \end{vmatrix} \] ### Step 2: Use the Sine Addition Formula Next, we will use the sine addition formula: \[ \sin(x + y) = \sin x \cos y + \cos x \sin y \] Applying this to \(\sin(A + \theta)\), \(\sin(B + \theta)\), and \(\sin(C + \theta)\): \[ \sin(A + \theta) = \sin A \cos \theta + \cos A \sin \theta \] \[ \sin(B + \theta) = \sin B \cos \theta + \cos B \sin \theta \] \[ \sin(C + \theta) = \sin C \cos \theta + \cos C \sin \theta \] ### Step 3: Substitute Back into the Determinant Now we substitute these back into the determinant: \[ D = \begin{vmatrix} \sin A \cos \theta & \cos A \sin \theta & \sin A \cos \theta + \cos A \sin \theta \\ \sin B \cos \theta & \cos B \sin \theta & \sin B \cos \theta + \cos B \sin \theta \\ \sin C \cos \theta & \cos C \sin \theta & \sin C \cos \theta + \cos C \sin \theta \end{vmatrix} \] ### Step 4: Simplify the Determinant Now, we can see that the third column can be expressed as a linear combination of the first two columns. This means that the determinant will evaluate to zero because two columns are linearly dependent. Thus, we conclude that: \[ D = 0 \] ### Conclusion The value of the determinant is independent of \(A\), \(B\), \(C\), and \(\theta\) since it evaluates to zero. ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

det [[sin A, cos A, sin (A + theta) sin B, cos B, sin (B + theta) sin C, cos C, sin (C + theta)]] = =

Prove that the determinant |(x,sin theta,cos theta),(-sin theta,-x,1),(cos theta,1,x)| is independent of theta

Prove that the determinant |[x,sin theta,cos theta],[-sin theta,-x,1],[cos theta,1,x]| is independent of

Using properties of determinant. Prove that | [sinA, cosA, sinA + cosB], [sinB, cosA, sinB + cosB], [sinC, cosA, sinC + cosB] | = 0

Prove that :2sin^(2)theta+4cos(theta+alpha)sin alpha sin theta+cos2(alpha+theta) is independent of theta.

The value of (sin^3 theta + cos^3 theta)/(sin theta+ costheta)+((cos^3 theta - sin^3 theta))/(cos theta - sin theta) is

Prove that the determinant [x sin theta cos theta-sin theta-x1cos theta1x] is independent of theta.

Which of the following values of a and b will make a(sin^(6)theta+cos^(6)theta)-b(sin^(4)theta+cos^(4)theta) independent of theta ?

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. The value of the determinant |(sinA,cosA,sin(A+theta)),(sinB,cosB,sin(...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |