Home
Class 12
MATHS
Let A=[(5,5alpha,alpha),(0,alpha,5alpha)...

Let `A=[(5,5alpha,alpha),(0,alpha,5alpha),(0,0,5)]` If `|A^2| =25` , then `|alpha|` equals :

A

`5^2`

B

1

C

`1/5`

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(|\alpha|\) given that the determinant of the matrix \(A^2\) is equal to 25. The matrix \(A\) is given as: \[ A = \begin{pmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{pmatrix} \] ### Step 1: Calculate \(A^2\) To find \(A^2\), we multiply matrix \(A\) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{pmatrix} \cdot \begin{pmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{pmatrix} \] ### Step 2: Perform the multiplication Calculating each element of \(A^2\): - **First row:** - First column: \(5 \cdot 5 + 5\alpha \cdot 0 + \alpha \cdot 0 = 25\) - Second column: \(5 \cdot 5\alpha + 5\alpha \cdot \alpha + \alpha \cdot 0 = 25\alpha + 5\alpha^2\) - Third column: \(5 \cdot \alpha + 5\alpha \cdot 5\alpha + \alpha \cdot 5 = \alpha + 25\alpha^2 + 5\alpha = 30\alpha^2 + \alpha\) - **Second row:** - First column: \(0 \cdot 5 + \alpha \cdot 0 + 5\alpha \cdot 0 = 0\) - Second column: \(0 \cdot 5\alpha + \alpha \cdot \alpha + 5\alpha \cdot 0 = \alpha^2\) - Third column: \(0 \cdot \alpha + \alpha \cdot 5\alpha + 5\alpha \cdot 5 = 5\alpha^2 + 25\alpha = 5\alpha^2 + 25\alpha\) - **Third row:** - First column: \(0 \cdot 5 + 0 \cdot 0 + 5 \cdot 0 = 0\) - Second column: \(0 \cdot 5\alpha + 0 \cdot \alpha + 5 \cdot 0 = 0\) - Third column: \(0 \cdot \alpha + 0 \cdot 5\alpha + 5 \cdot 5 = 25\) Thus, we have: \[ A^2 = \begin{pmatrix} 25 & 25\alpha + 5\alpha^2 & 30\alpha^2 + \alpha \\ 0 & \alpha^2 & 5\alpha^2 + 25\alpha \\ 0 & 0 & 25 \end{pmatrix} \] ### Step 3: Calculate the determinant \(|A^2|\) Using the property of determinants for upper triangular matrices, the determinant is the product of the diagonal entries: \[ |A^2| = 25 \cdot \alpha^2 \cdot 25 = 625\alpha^2 \] ### Step 4: Set the determinant equal to 25 We know from the problem statement that: \[ |A^2| = 625\alpha^2 = 25 \] ### Step 5: Solve for \(|\alpha|\) Dividing both sides by 625: \[ \alpha^2 = \frac{25}{625} = \frac{1}{25} \] Taking the square root: \[ |\alpha| = \sqrt{\frac{1}{25}} = \frac{1}{5} \] ### Final Answer Thus, the value of \(|\alpha|\) is: \[ |\alpha| = \frac{1}{5} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Let A=[(5,5alpha,alpha),(0,alpha,5alpha),(0,0,5)] . If |A|^2=25 , then |alpha| is equal to :

Let A=[[5,5 alpha,alpha],[0,alpha,5 alpha],[0,0,5]] .If |A^(2)|=25 ,then | alpha| equals

Let A=[[5,5 alpha,alpha0,alpha,5 alpha0,0,5]].IfA^(2)=25, then alpha

Let A=[5 5alphaalpha0alpha5alpha0 0 5]dot"I f"|A^2|=25 , then |alpha| equals (1) 5^2 (2) 1 (3) 1/5 (4) 5

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

Let F(alpha)=[[cos alpha,-sin alpha,0sin alpha,cos alpha,00,0,1]], where alpha in R Then (F(alpha))^(-1) is equal to F(alpha^(-1)) b.F(-alpha) c.F(2 alpha)d.-[[1,11,0]]

Let A = [{:("cos"alpha, -"sin"alpha), ("sin"alpha, "cos"alpha"):}], (alpha in R) such that A^(32) = [{:(0, -1), (1, 0):}] . Then, a value of alpha is

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. Let A=[(5,5alpha,alpha),(0,alpha,5alpha),(0,0,5)] If |A^2| =25 , then ...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |