Home
Class 12
MATHS
If Delta=|(a1x+b1y,a2x+b2y,a3x+b3y),(b1x...

If `Delta=|(a_1x+b_1y,a_2x+b_2y,a_3x+b_3y),(b_1x+a_1y,b_2x+a_2y,b_3x+a_3y),(b_1x+a_1,b_2x+a_2,b_3x+a_3)|` then `Delta` is equal to

A

`a_1a_2a_3 x^(2) +b_1b_2b_3y^2`

B

`x^2+y^2`

C

0

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant given by \[ \Delta = \begin{vmatrix} a_1x + b_1y & a_2x + b_2y & a_3x + b_3y \\ b_1x + a_1y & b_2x + a_2y & b_3x + a_3y \\ b_1x + a_1 & b_2x + a_2 & b_3x + a_3 \end{vmatrix} \] we will follow these steps: ### Step 1: Rewrite the determinant We can express the determinant in a clearer format: \[ \Delta = \begin{vmatrix} a_1x + b_1y & a_2x + b_2y & a_3x + b_3y \\ b_1x + a_1y & b_2x + a_2y & b_3x + a_3y \\ b_1x + a_1 & b_2x + a_2 & b_3x + a_3 \end{vmatrix} \] ### Step 2: Factor out common terms Notice that we can factor out \(x\) from the first row and \(y\) from the second row: \[ \Delta = x \cdot y^2 \cdot \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \] ### Step 3: Analyze the determinant Now, we observe that the second and third rows of the determinant are identical: \[ \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \] Since two rows of a determinant are identical, the value of this determinant is zero: \[ \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = 0 \] ### Step 4: Conclude the value of Delta Thus, we have: \[ \Delta = x \cdot y^2 \cdot 0 = 0 \] Therefore, the value of \(\Delta\) is \[ \Delta = 0 \] ### Summary of Steps: 1. Rewrite the determinant in a clearer format. 2. Factor out common terms from the rows. 3. Analyze the determinant for identical rows. 4. Conclude that the value of the determinant is zero.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If a_1x+b_1y+c_1z=0, a_2x+b_2y+c_2z=0, a_3x+b_3y+c_3z=0 and |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|=0 , then the given system then

|(a_1-b_1+x,a_1-b_2,a_1-b_3),(a_2-b_1,a_2-b_2+x,a_2-b_3),(a_3-b_1,a_3-b_2,a_3-b_3+x)| =x^3+x^2sum_(i=l)^3(a_i-b_i)+xsum_(l lt=i < j <= 3)^3 (a_i-b_i)+x sum_(l <= i < j <= 3)(a_i-b_j)(b_i-b_j).

|(2x_1y_1, x_1y_2+x_2y_1, x_1y_3+x_3y_1),(x_1y_2+x_2y_1, 2x_2y_2, x_2y_3+x_3y_2),(x_1y_3+x_3y_1, x_2y_3+x_3y_2, 2x_3y_3)|= (A) 0 (B) 1 (C) -1 (D) none of these

Consider the system of equations a_1x+b_1y+c_1z=0 a_2x+b_2y+c_2z=0 a_3x+b_3y+c_3z=0 if {:abs((a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)):}=0 , then the system has

Consider the following system if equations a_1x+b_1y+c_1z=d_1, a_2x+b_2y+c_2z=d_2, a_3x+b_3y+c_3z=d_3 Let /_\= |(a_1,b_1,c_1), (a_2,b_2,c_2), (a_3,b_3,c_3)|, /_\_1= |(d_1,b_1,c_1), (d_2,b_2,c_2), (d_3,b_3,c_3)|, ,/_\_2=|(a_1,d_1,c_1), (a_2,d_2,c_2), (a_3,d_3,c_3)|,, /_\_3=|(a_1,b_1,cd_1), (a_2,b_2,d_2), (a_3,b_3,d_3)|, The given system of equations will have i. unique solution of /\=0 ii. infinitely many solutions if /_\=/_\_1=/_\_3=0 . iii. no solution if /_\=0 and any of /_\_1, /_\_2, /_\_3 is none zero. On the basis of above informatioin answer thefollowing questions for the following system of linear equations. 2x+ay+6z=8, x+2y+bz=5, x+y+3z=4 The given system of equatioin has unique solution if (A) a=2,b=2 (B) a!=2,b=3 (C) a!=2, b!=3 (D) a=2,b!=3

Consider the following system if equations a_1x+b_1y+c_1z=d_1, a_2x+b_2y+c_2z=d_2, a_3x+b_3y+c_3z=d_3 Let /_\= |(a_1,b_1,c_1), (a_2,b_2,c_2), (a_3,b_3,c_3)|, /_\_1= |(d_1,b_1,c_1), (d_2,b_2,c_2), (d_3,b_3,c_3)|, ,/_\_2=|(a_1,d_1,c_1), (a_2,d_2,c_2), (a_3,d_3,c_3)|,, /_\_3=|(a_1,b_1,cd_1), (a_2,b_2,d_2), (a_3,b_3,d_3)|, The given system of equations will have i. unique solution of /_\!=0 ii. infinitely many solutions if /_\=/_\_1=/_\_3=0 . iii. no solution if /_\=0 and any of /_\_1, /_\_2, /_\_3 is none zero. On the basis of above informatioin answer the following questions for the following system of linear equations. 2x+ay+6z=8, x+2y+bz=5, x+y+3z=4 The given system of equatioin has infinitely many solution if (A) a!=2, b!=3 (B) a!=2,b=3 (C) a=2,b epsilonR (D) a!=2, bepsilonR

Find the coefficient of x in the determinant |((1+x)^(a_1 b_1),(1+x)^(a_1 b_2),(1+x)^(a_1 b_3)),((1+x)^(a_2 b_2),(1+x)^(a_2 b_2),(1+x)^(a_2 b_3)),((1+x)^(a_3 b_3),(1+x)^(a_3 b_2),(1+x)^(a_3 b_3))|=0.

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If Delta=|(a1x+b1y,a2x+b2y,a3x+b3y),(b1x+a1y,b2x+a2y,b3x+a3y),(b1x+a1,...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |