Home
Class 12
MATHS
If Delta=|(x1+iy1,x1i-y1,z1),(x2+iy2,x2i...

If `Delta=|(x_1+iy_1,x_1i-y_1,z_1),(x_2+iy_2,x_2i-y_2,z_2),(x_3+iy_3,x_3i-y_3,z_3)|` then `Delta` is

A

`-1`

B

2i

C

0

D

3i

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant given by \[ \Delta = \begin{vmatrix} x_1 + iy_1 & x_1 i - y_1 & z_1 \\ x_2 + iy_2 & x_2 i - y_2 & z_2 \\ x_3 + iy_3 & x_3 i - y_3 & z_3 \end{vmatrix} \] we can apply properties of determinants to simplify the calculation. ### Step 1: Break down the first column We can separate the first column into real and imaginary parts: \[ \Delta = \begin{vmatrix} x_1 + iy_1 & x_1 i - y_1 & z_1 \\ x_2 + iy_2 & x_2 i - y_2 & z_2 \\ x_3 + iy_3 & x_3 i - y_3 & z_3 \end{vmatrix} \] This can be rewritten as: \[ \Delta = \begin{vmatrix} x_1 & x_1 i - y_1 & z_1 \\ x_2 & x_2 i - y_2 & z_2 \\ x_3 & x_3 i - y_3 & z_3 \end{vmatrix} + i \begin{vmatrix} y_1 & x_1 i - y_1 & z_1 \\ y_2 & x_2 i - y_2 & z_2 \\ y_3 & x_3 i - y_3 & z_3 \end{vmatrix} \] ### Step 2: Factor out common terms For the first determinant, we can factor out \(i\) from the second column: \[ \Delta = \begin{vmatrix} x_1 & x_1 i & z_1 \\ x_2 & x_2 i & z_2 \\ x_3 & x_3 i & z_3 \end{vmatrix} - \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} \] ### Step 3: Evaluate the determinants The first determinant can be simplified by taking \(i\) out: \[ \Delta = i \begin{vmatrix} x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 \\ z_1 & z_2 & z_3 \end{vmatrix} - \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} \] ### Step 4: Recognize properties of determinants Notice that the first determinant has two identical columns, which means its value is zero: \[ \begin{vmatrix} x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 \\ z_1 & z_2 & z_3 \end{vmatrix} = 0 \] Thus, we have: \[ \Delta = 0 - \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} \] ### Step 5: Final result The final result for \(\Delta\) is: \[ \Delta = -\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} \] ### Conclusion Thus, the value of \(\Delta\) is determined by the negative of the determinant of the matrix formed by the real parts and imaginary parts of the original columns.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Let x_1y_1z_1,x_2y_2z_2 and x_3y_3z_3 be three 3-digit even numbers and Delta=|{:(x_1,y_1,z_1),(x_2,y_2,z_2),(x_3,y_3,z_3):}| . then Delta is

If (x_(1),y_(1),z_(1)),(x_(2),y_(2),z_(2)) and (x_(3),y_(3),z_(3)) are the vertices of an equilateral triangle such that (x_(1)-2)^(2)+(y_(1)-3)^(2)+(z_(1)-4)^(2)=(x_(2)-2)^(2)+(y_(2)-3)^(2)+(z_(2)-4)^(2) =(x_(3)-2)^(2)+(y_(3)-3)^(2)+(z_(3)-4)^(2) then sum x_(1)+2sum y_(1)+3sum z_(1)

STATEMENT-1 : The centroid of a tetrahedron with vertices (0, 0,0), (4, 0, 0), (0, -8, 0), (0, 0, 12)is (1, -2, 3). and STATEMENT-2 : The centroid of a triangle with vertices (x_(1), y_(1), z_(1)), (x_(2), y_(2), z_(2)) and (x_(3), y_(3), z_(3)) is ((x_(1)+x_(2)+x_(3))/3, (y_(1)+y_(2)+y_(3))/3, (z_(1)+z_(2)+z_(3))/3)

Show that the coordinates off the centroid of the triangle with vertices A(x_(1),y_(1),z_(1)),B(x_(2),y_(2),z_(2)) and (x_(3),y_(3),z_(3)) are ((x_(1)+x_(2)+x_(3))/(3),(y_(1)+y_(2)+y_(3))/(3),(z_(1)+z_(2)+z_(3))/(3))

Find the coordinates of the centroid of a triangle having vertices P(x_1,y_1,z_1),Q(x_2,y_2,z_2) and R(x_3,y_3,z_3)

The solution of the system of equations a_(1)x+b_(1)y+c_(1)z=d_(1),a_(2)x+b_(2)y+c_(2)z=d_(2) and a_(3)x+b_(3)y+c_(3)z=d_(3) using Crammer's rule is x=(Delta_(1))/(Delta),y=(Delta_(2))/(Delta) and z=(Delta_(3))/(Delta) where Delta!=0 The solution of 2x+y+z=1,x-2y-3z=1,3x+2y+4z=5 is

The solution of the system of equations a_(1)x+b_(1)y+c_(1)z=d_(1),a_(2)x+b_(2)y+c_(2)z=d_(2) and a_(3)x+b_(3)y+c_(3)z=d_(3) using Crammer's rule is x=(Delta_(1))/(Delta),y=(Delta_(2))/(Delta) and z=(Delta_(3))/(Delta) where Delta!=0 The solution of the system 2x+y+z=1 , x-2y-z=(3)/(2) , 3y-5z=9 is

For x_1,x_2, y_1, y_2 in R , if 0

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If Delta=|(x1+iy1,x1i-y1,z1),(x2+iy2,x2i-y2,z2),(x3+iy3,x3i-y3,z3)| th...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |