Home
Class 12
MATHS
If Delta=|(i^(n),i^(n+1),i^(n+2)),(i^(n+...

If `Delta=|(i^(n),i^(n+1),i^(n+2)),(i^(n+5),i^(n+4),i^(n+3)),(i^(n+6),i^(n+7),i^(n+8))|` where `i=sqrt(-1)` , then its value is

A

`0AA n in R`

B

1 if `n =4k`

C

`-i` if `n =3k`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta = \begin{vmatrix} i^n & i^{n+1} & i^{n+2} \\ i^{n+5} & i^{n+4} & i^{n+3} \\ i^{n+6} & i^{n+7} & i^{n+8} \end{vmatrix} \), where \( i = \sqrt{-1} \), we can follow these steps: ### Step 1: Factor out \( i^n \) Notice that each element in the determinant can be expressed in terms of \( i^n \): - The first row becomes \( i^n, i^{n+1} = i^n \cdot i, i^{n+2} = i^n \cdot i^2 \). - The second row becomes \( i^{n+5} = i^n \cdot i^5, i^{n+4} = i^n \cdot i^4, i^{n+3} = i^n \cdot i^3 \). - The third row becomes \( i^{n+6} = i^n \cdot i^6, i^{n+7} = i^n \cdot i^7, i^{n+8} = i^n \cdot i^8 \). Thus, we can factor out \( i^n \) from each row: \[ \Delta = i^n \cdot \begin{vmatrix} 1 & i & i^2 \\ i^5 & i^4 & i^3 \\ i^6 & i^7 & i^8 \end{vmatrix} \] ### Step 2: Simplify the determinant Next, we can simplify the determinant: \[ \Delta = i^n \cdot \begin{vmatrix} 1 & i & -1 \\ i & 1 & -i \\ -1 & -i & 1 \end{vmatrix} \] ### Step 3: Perform row operations Now, we can perform row operations to simplify the determinant further. We can add the first column to the second column: \[ \Delta = i^n \cdot \begin{vmatrix} 1 & 0 & -1 \\ i & 1 & -i \\ -1 & -i & 1 \end{vmatrix} \] ### Step 4: Calculate the determinant Now, we can calculate the determinant. The first column remains unchanged, while the second column has been modified: \[ \Delta = i^n \cdot \begin{vmatrix} 1 & 0 & -1 \\ i & 1 & -i \\ -1 & -i & 1 \end{vmatrix} \] The determinant can be calculated using the formula for a 3x3 determinant: \[ \Delta = i^n \cdot \left( 1 \cdot (1 \cdot 1 - (-i)(-1)) - 0 + (-1)(i \cdot (-i) - 1 \cdot (-1)) \right) \] Calculating the determinant: \[ = i^n \cdot (1 - i) = i^n \cdot (1 - i) \] ### Step 5: Check for linear dependence Notice that if we add the first column to the third column, we can see that the first column will become \( 0 \): \[ \Delta = i^n \cdot \begin{vmatrix} 1 & i & 0 \\ i & 1 & 0 \\ -1 & -i & 0 \end{vmatrix} \] Since one column is now all zeros, the determinant evaluates to zero: \[ \Delta = 0 \] ### Final Result Thus, the value of the determinant \( \Delta \) is: \[ \Delta = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

The value of i^(2n)+i^(2n+1)+i^(2n+2)+i^(2n+3), where i=sqrt(-1), is

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is

If (1+i)^(2n)+(1-i)^(2n)=-2^(n+1)(where,i=sqrt(-1) for all those n, which are

The value of sum Sigma_(n=1)^(13) (i^n + i^(n+1)) where i= sqrt(-1) equals

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If Delta=|(i^(n),i^(n+1),i^(n+2)),(i^(n+5),i^(n+4),i^(n+3)),(i^(n+6),i...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |