Home
Class 12
MATHS
|(1,a,a^2,a^3+bcd),(1,b,b^2,b^3+cda),(1,...

`|(1,a,a^2,a^3+bcd),(1,b,b^2,b^3+cda),(1,c,c^2,c^3+abd),(1,d,d^2,d^3+abc)|` =

A

`a^3b^3c^3`

B

`b^3c^3d^3`

C

`c^3d^3a^3`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} 1 & a & a^2 & a^3 + bcd \\ 1 & b & b^2 & b^3 + cda \\ 1 & c & c^2 & c^3 + abd \\ 1 & d & d^2 & d^3 + abc \end{vmatrix} \] we can use properties of determinants to simplify the calculation. ### Step 1: Split the determinant We can split the last column into two parts: \[ D = \begin{vmatrix} 1 & a & a^2 & a^3 \\ 1 & b & b^2 & b^3 \\ 1 & c & c^2 & c^3 \\ 1 & d & d^2 & d^3 \end{vmatrix} + \begin{vmatrix} 1 & a & a^2 & bcd \\ 1 & b & b^2 & cda \\ 1 & c & c^2 & abd \\ 1 & d & d^2 & abc \end{vmatrix} \] Let's denote the first determinant as \(D_1\) and the second as \(D_2\). ### Step 2: Evaluate \(D_1\) The determinant \(D_1\) is a Vandermonde determinant, which can be calculated as: \[ D_1 = (b-a)(c-a)(d-a)(c-b)(d-b)(d-c) \] ### Step 3: Evaluate \(D_2\) Now, we will evaluate \(D_2\). Notice that we can factor out \(bcd\), \(cda\), \(abd\), and \(abc\) from the last column. We can express \(D_2\) as: \[ D_2 = \begin{vmatrix} 1 & a & a^2 & 0 \\ 1 & b & b^2 & 0 \\ 1 & c & c^2 & 0 \\ 1 & d & d^2 & 0 \end{vmatrix} + \begin{vmatrix} 1 & a & a^2 & bcd \\ 1 & b & b^2 & cda \\ 1 & c & c^2 & abd \\ 1 & d & d^2 & abc \end{vmatrix} \] The first part is clearly zero since the last column is all zeros. Therefore, \(D_2\) simplifies to: \[ D_2 = \begin{vmatrix} 1 & a & a^2 & bcd \\ 1 & b & b^2 & cda \\ 1 & c & c^2 & abd \\ 1 & d & d^2 & abc \end{vmatrix} \] ### Step 4: Combine \(D_1\) and \(D_2\) Now, we can combine \(D_1\) and \(D_2\): \[ D = D_1 + D_2 \] ### Step 5: Final evaluation Since \(D_1\) is non-zero (as long as \(a\), \(b\), \(c\), and \(d\) are distinct), and \(D_2\) can be shown to be zero due to the properties of determinants (as the last column can be expressed as a linear combination of the other columns), we conclude that: \[ D = D_1 + 0 = D_1 \] Thus, the final value of the determinant \(D\) is: \[ D = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Prove that |[1,a,a^2,a^3+bcd] , [1,b,b^2,b^3+cda] , [1,c,c^2,c^3+dab] , [1,d,d^2,d^3+abc]|=0

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0 and vectors (1,a,a^2),(1,b,b^2) and (1,c,c^2) are hon coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

|[a,a^2,a^3-1],[b,b^2,b^3-1],[c,c^2,c^3-1]|=0 prove that abc= I

If A=|(1,1,1),(a,b,c),(a^3,b^3,c^3)|, B=|(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3)|, C=|(a,b,c),(a^2,b^2,c^2),(a^3,b^3,c^3)| , then which relation is correct :

If a^2+b^2+c^2+ab+bc+ca<=0 AA a, b, c in R then find the value of the determinant |[(a+b+2)^2, a^2+b^2, 1] , [1, (b+c+2)^2, b^2+c^2] , [c^2+a^2, 1, (c+a+2)^2]| : (A) abc(a^2 + b^2 +c^2) (B) 0 (C) a^3+b^3+c^3 + 3abc (D) 65

Match the following: (a) {:(A,B,C,D),(2,3,4,1):} (b) {:(A,B,C,D),(4,1,3,2):} (c) {:(A,B,C,D),(4,3,2,1):} (d) {:(A,B,C,D),(1,4,2,3):}

if D_1=|{:(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3):}| and D_2=|{:(a_1+2a_2+3a_3,2a_3,5a_2),(b_1+2b_2+3b_3,2b_3, 5b_2),(c_1+2c_2 + 3c_3 , 2c_3 , 5c_2):}| then D_2/D_1 is equal to :

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. |(1,a,a^2,a^3+bcd),(1,b,b^2,b^3+cda),(1,c,c^2,c^3+abd),(1,d,d^2,d^3+ab...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |