Home
Class 12
MATHS
If Delta=|(1/z,1/z,-((x+y))/z^2),(-((y+z...

If `Delta=|(1/z,1/z,-((x+y))/z^2),(-((y+z))/x^2,1/x,1/x),(-(y(y+z))/(x^2z),(x+2y+z)/(xz),-(y(x+y))/(xz^2))|` then `Delta` is independent of

A

x

B

y

C

z

D

`Delta=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant given in the question, we will follow a systematic approach to simplify the determinant step by step. Given: \[ \Delta = \begin{vmatrix} \frac{1}{z} & \frac{1}{z} & -\frac{x+y}{z^2} \\ -\frac{y+z}{x^2} & \frac{1}{x} & \frac{1}{x} \\ -\frac{y(y+z)}{x^2 z} & \frac{x+2y+z}{xz} & -\frac{y(x+y)}{xz^2} \end{vmatrix} \] ### Step 1: Row Operations We will perform row operations to simplify the determinant. Let's denote the rows as \( R_1, R_2, R_3 \). 1. **Multiply \( R_1 \) by \( z^2 \)**: \[ R_1 \rightarrow z^2 R_1 = \begin{vmatrix} 1 & 1 & -(x+y) \\ -\frac{y+z}{x^2} & \frac{1}{x} & \frac{1}{x} \\ -\frac{y(y+z)}{x^2 z} & \frac{x+2y+z}{xz} & -\frac{y(x+y)}{xz^2} \end{vmatrix} \] ### Step 2: Further Row Operations 2. **Multiply \( R_2 \) by \( x^2 \)**: \[ R_2 \rightarrow x^2 R_2 = \begin{vmatrix} 1 & 1 & -(x+y) \\ -(y+z) & x & x \\ -\frac{y(y+z)}{x^2 z} & \frac{x+2y+z}{xz} & -\frac{y(x+y)}{xz^2} \end{vmatrix} \] 3. **Multiply \( R_3 \) by \( x^2 z^2 \)**: \[ R_3 \rightarrow x^2 z^2 R_3 = \begin{vmatrix} 1 & 1 & -(x+y) \\ -(y+z) & x & x \\ -y(y+z) & (x+2y+z)x & -y(x+y) \end{vmatrix} \] ### Step 3: Column Operations 4. **Perform column operation \( C_1 \rightarrow C_1 + C_2 + C_3 \)**: \[ C_1 \rightarrow C_1 + C_2 + C_3 = \begin{vmatrix} 1 + 1 + -(x+y) & 1 & -(x+y) \\ -(y+z) + x + x & x & x \\ -y(y+z) + (x+2y+z)x - y(x+y) & (x+2y+z)x & -y(x+y) \end{vmatrix} \] ### Step 4: Simplification 5. **Simplifying the determinant**: After performing the operations, we will notice that the first column will lead to a row of zeros, which implies that the determinant is zero. ### Conclusion Thus, we conclude that: \[ \Delta = 0 \] This indicates that the determinant is independent of the variables \( x, y, z \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

D=|[(1)/(z),(1)/(z),-(x+y)/(z^(2))-(y+z)/(x^(2)),(1)/(x),(1)/(x)-(y(y+z)/(x^(2)z)),(x+2y+z)/(x)z,-(y(x+y)/(xz^(2))] then,the incorrect statement is -

(x)/(y)*(y)/(xz)*(z^(2))/(xy)

(1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^(2)

(y^(2)+yz+z^(2))/((x-y)(x-z))+(z^(2)+zx+x^(2))/((y-z)(y-x))+(x^(2)+xy+y^(2))/((z-x)(z-y))

simplify- (((x+y)^2-xy)/((y-z)(z-x)))+(((y+z)^2-yz)/((z-x)(x-y)))+(((z+x)^2-zx)/((x-y)(y-z)))

If x+y+z=xyz prove that (2x)/(1-x^(2))+(2y)/(1-y^(2))+(2z)/(1-z^(2))=(2x)/(1-x^(2))(2y)/(1-y^(2))(2z)/(1-z^(2))

If Delta=|{:(,x,2y-z,-z),(,y,2x-z,-z),(,y,2y-z,2x-2y-z):}| ,then

If xy+yz+xz=1, then prove that (x)/(1-x^(2))+(y)/(1-y^(2))+(z)/(1-z^(2))=(4xyz)/((1-x^(2))(1-y^(2))(1-z^(2)))

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If Delta=|(1/z,1/z,-((x+y))/z^2),(-((y+z))/x^2,1/x,1/x),(-(y(y+z))/(x^...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |