Home
Class 12
MATHS
If Delta1=|(7,x,2),(-5,x+1,3),(4,x,7)| a...

If `Delta_1=|(7,x,2),(-5,x+1,3),(4,x,7)| and Delta_2=|(x,2,7),(x+1,3,-5),(x,7,4)|` then `Delta_1-Delta_2=0` for values of x equal to

A

0

B

2

C

`x inR`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinants \( \Delta_1 \) and \( \Delta_2 \) and then find the values of \( x \) for which \( \Delta_1 - \Delta_2 = 0 \). ### Step 1: Calculate \( \Delta_1 \) Given: \[ \Delta_1 = \begin{vmatrix} 7 & x & 2 \\ -5 & x+1 & 3 \\ 4 & x & 7 \end{vmatrix} \] To calculate the determinant \( \Delta_1 \), we can use the formula for the determinant of a 3x3 matrix: \[ \Delta = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \] Applying this to \( \Delta_1 \): \[ \Delta_1 = 7 \begin{vmatrix} x+1 & 3 \\ x & 7 \end{vmatrix} - x \begin{vmatrix} -5 & 3 \\ 4 & 7 \end{vmatrix} + 2 \begin{vmatrix} -5 & x+1 \\ 4 & x \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} x+1 & 3 \\ x & 7 \end{vmatrix} = (x+1) \cdot 7 - 3 \cdot x = 7x + 7 - 3x = 4x + 7 \) 2. \( \begin{vmatrix} -5 & 3 \\ 4 & 7 \end{vmatrix} = (-5) \cdot 7 - 3 \cdot 4 = -35 - 12 = -47 \) 3. \( \begin{vmatrix} -5 & x+1 \\ 4 & x \end{vmatrix} = (-5) \cdot x - (x+1) \cdot 4 = -5x - 4x - 4 = -9x - 4 \) Now substituting back into \( \Delta_1 \): \[ \Delta_1 = 7(4x + 7) - x(-47) + 2(-9x - 4) \] \[ = 28x + 49 + 47x - 18x - 8 \] \[ = (28x + 47x - 18x) + (49 - 8) \] \[ = 57x + 41 \] ### Step 2: Calculate \( \Delta_2 \) Given: \[ \Delta_2 = \begin{vmatrix} x & 2 & 7 \\ x+1 & 3 & -5 \\ x & 7 & 4 \end{vmatrix} \] Using the same determinant formula: \[ \Delta_2 = x \begin{vmatrix} 3 & -5 \\ 7 & 4 \end{vmatrix} - 2 \begin{vmatrix} x+1 & -5 \\ x & 4 \end{vmatrix} + 7 \begin{vmatrix} x+1 & 3 \\ x & 7 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 3 & -5 \\ 7 & 4 \end{vmatrix} = 3 \cdot 4 - (-5) \cdot 7 = 12 + 35 = 47 \) 2. \( \begin{vmatrix} x+1 & -5 \\ x & 4 \end{vmatrix} = (x+1) \cdot 4 - (-5) \cdot x = 4x + 4 + 5x = 9x + 4 \) 3. \( \begin{vmatrix} x+1 & 3 \\ x & 7 \end{vmatrix} = (x+1) \cdot 7 - 3 \cdot x = 7x + 7 - 3x = 4x + 7 \) Now substituting back into \( \Delta_2 \): \[ \Delta_2 = x(47) - 2(9x + 4) + 7(4x + 7) \] \[ = 47x - 18x - 8 + 28x + 49 \] \[ = (47x - 18x + 28x) + (-8 + 49) \] \[ = 57x + 41 \] ### Step 3: Set up the equation \( \Delta_1 - \Delta_2 = 0 \) Now we have: \[ \Delta_1 = 57x + 41 \] \[ \Delta_2 = 57x + 41 \] Thus: \[ \Delta_1 - \Delta_2 = (57x + 41) - (57x + 41) = 0 \] ### Conclusion The equation \( \Delta_1 - \Delta_2 = 0 \) holds true for all values of \( x \). ### Final Answer The values of \( x \) for which \( \Delta_1 - \Delta_2 = 0 \) is: \[ \text{for all } x \in \mathbb{R} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If Delta_(1) = |(7,x,2),(-5,x +1,3),(4,x,7)| and Delta_(2) = |(x,2,7),(x +1,3,-5),(x,7,4)| , then the value of x for which Delta_(1) + Delta_(2) = 0 , is

If Delta_1=|{:(10,4,3),(17,7,4),(4,-5,7):}|,Delta_2=|{:(4,x+5,3),(7,x+12,4),(-5,x-1,7):}| such that Delta_1+Delta_2=0, then

If Delta = |(10,4,3),(17,7,4),(4,-5,7)|, Delta_(2) = |(4,x +5,3),(7,x +12,4),(-5,x -1,7)| such that Delta_(1) + Delta_(2) = 0 , then

Delta_1 = |[x,b,b], [a,x, b] ,[a, a, x]| and Delta_2 = |[x,b],[a,x]| show that d(Delta_1)/ dx = 3 Delta_2

7(x-2)-4(5-x)=1

(2-7x)/(1-5x)=(3+7x)/(4+5x)

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If Delta1=|(7,x,2),(-5,x+1,3),(4,x,7)| and Delta2=|(x,2,7),(x+1,3,-5),...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |