Home
Class 12
MATHS
If Delta1=|(a,b,2c),(p,q,2r),(x,y,2z)| a...

If `Delta_1=|(a,b,2c),(p,q,2r),(x,y,2z)| and Delta_2=|(r,2p,q),(2z,4x,2y),(c,2a,b)|` then `Delta_1//Delta_2` is equal to

A

1

B

2

C

`-1`

D

`1//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio \( \frac{\Delta_1}{\Delta_2} \) where \[ \Delta_1 = \begin{vmatrix} a & b & 2c \\ p & q & 2r \\ x & y & 2z \end{vmatrix} \] and \[ \Delta_2 = \begin{vmatrix} r & 2p & q \\ 2z & 4x & 2y \\ c & 2a & b \end{vmatrix} \] ### Step 1: Calculate \( \Delta_1 \) Using the determinant formula for a 3x3 matrix: \[ \Delta_1 = a \begin{vmatrix} q & 2r \\ y & 2z \end{vmatrix} - b \begin{vmatrix} p & 2r \\ x & 2z \end{vmatrix} + 2c \begin{vmatrix} p & q \\ x & y \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} q & 2r \\ y & 2z \end{vmatrix} = q \cdot 2z - 2r \cdot y = 2qz - 2ry \) 2. \( \begin{vmatrix} p & 2r \\ x & 2z \end{vmatrix} = p \cdot 2z - 2r \cdot x = 2pz - 2rx \) 3. \( \begin{vmatrix} p & q \\ x & y \end{vmatrix} = p \cdot y - q \cdot x = py - qx \) Substituting these back into the equation for \( \Delta_1 \): \[ \Delta_1 = a(2qz - 2ry) - b(2pz - 2rx) + 2c(py - qx) \] Expanding this gives: \[ \Delta_1 = 2aqz - 2ary - 2bpz + 2brx + 2c(py - qx) \] ### Step 2: Calculate \( \Delta_2 \) Using the same determinant formula: \[ \Delta_2 = r \begin{vmatrix} 4x & 2y \\ 2a & b \end{vmatrix} - 2p \begin{vmatrix} 2z & 2y \\ c & b \end{vmatrix} + q \begin{vmatrix} 2z & 4x \\ c & 2a \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 4x & 2y \\ 2a & b \end{vmatrix} = 4x \cdot b - 2y \cdot 2a = 4xb - 4ay \) 2. \( \begin{vmatrix} 2z & 2y \\ c & b \end{vmatrix} = 2z \cdot b - 2y \cdot c = 2zb - 2yc \) 3. \( \begin{vmatrix} 2z & 4x \\ c & 2a \end{vmatrix} = 2z \cdot 2a - 4x \cdot c = 4az - 4xc \) Substituting these back into the equation for \( \Delta_2 \): \[ \Delta_2 = r(4xb - 4ay) - 2p(2zb - 2yc) + q(4az - 4xc) \] Expanding this gives: \[ \Delta_2 = 4rxb - 4ray - 4pbz + 4pyc + 4qaz - 4qxc \] ### Step 3: Find the ratio \( \frac{\Delta_1}{\Delta_2} \) Now we have: \[ \Delta_1 = 2aqz - 2ary - 2bpz + 2brx + 2c(py - qx) \] \[ \Delta_2 = 4rxb - 4ray - 4pbz + 4pyc + 4qaz - 4qxc \] Notice that both determinants can be factored. Taking out common factors from \( \Delta_1 \) and \( \Delta_2 \): \[ \Delta_1 = 2(A) \] \[ \Delta_2 = 4(B) \] Where \( A \) and \( B \) are the remaining expressions. Thus: \[ \frac{\Delta_1}{\Delta_2} = \frac{2A}{4B} = \frac{1}{2} \cdot \frac{A}{B} \] ### Final Result The final result simplifies to: \[ \frac{\Delta_1}{\Delta_2} = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If Delta_1=|(1,0),(a,b)| and Delta_2=|(1,0),(c,d)| , then Delta_2Delta_1 is equal to :

If A = |(a,b,c),(x,y,z),(p,q,r)| and B = |(q,-b,y),(-p,a,-x),(r,-c,z)| , then

If Delta=|{:(1,x,x^(2)),(1,y,y^(2)),(1,z,z^(2)):}| , Delta_(1)=|{:(1,1,1),(yz,zx,xy),(x,y,z):}| , then prove that Delta+Delta_(1)=0

If Delta=|(a,p,x),(b,q,y),(c,r,z)|=16 then Delta_(1)=|(p+x,a+x,a+p),(q+y,b+y,b+q),(r+z,c+z,c+r)|=32

Let Delta_(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}| and Delta_(2)=|{:(A,B,C),(x,y,z),(yz,zx,xy):}| , then :

If Delta_1 = |[1,1,1] , [x^2, y^2, z^2] , [x,y,z]| and Delta_2=|[1,1,1] , [yz, zx, xy] , [x,y,z]| then without expanding show that Delta_1= Delta_2

If (a_(1)//x)+(b_(1)//y)=c_(1),(a_(2)//x)+(b_(2)//y)=c_(2) Delta_(1)=|{:(a_(1),b_(1)),(a_(2),b_(2)):}|,Delta_(2)=|{:(b_(1),c_(1)),(b_(2),c_(2)):}|," "Delta_(3)=|{:(c_(1),a_(1)),(c_(2),a_(2)):}| , then (x, y) is equal to which one of the following ?

If Delta_1=|[a, b, c],[ x, y, z],[ p, q, r]| and Delta_2=|[q,-b, y],[-p, a,-x],[ r,-c, z]|, without expending or evaluating Delta_1 and Delta_2 , show that Delta_1+Delta_2=0

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If Delta1=|(a,b,2c),(p,q,2r),(x,y,2z)| and Delta2=|(r,2p,q),(2z,4x,2y)...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |