Home
Class 12
MATHS
If Dr =|(2^(r-1),2(3^(r-1)),4(5^(r-1))),...

If `D_r =|(2^(r-1),2(3^(r-1)),4(5^(r-1))),(x,y,z),(2^(n)-1,3^(n)-1,5^(n)-1)|` then `sum_(r=1)^n D_r=`

A

n

B

`n^2`

C

`n^3`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( D_r \) and then find the sum from \( r = 1 \) to \( n \). Given: \[ D_r = \begin{vmatrix} 2^{r-1} & 2(3^{r-1}) & 4(5^{r-1}) \\ x & y & z \\ 2^n - 1 & 3^n - 1 & 5^n - 1 \end{vmatrix} \] ### Step 1: Evaluate \( D_r \) We can expand the determinant \( D_r \) using the properties of determinants. We will use the fact that if two rows of a determinant are identical, the determinant evaluates to zero. ### Step 2: Identify the rows The first row is: \[ (2^{r-1}, 2(3^{r-1}), 4(5^{r-1})) \] The third row is: \[ (2^n - 1, 3^n - 1, 5^n - 1) \] ### Step 3: Analyze the first row If we substitute \( r = n \) into the first row, we get: \[ (2^{n-1}, 2(3^{n-1}), 4(5^{n-1})) \] ### Step 4: Check for identical rows If we look at the third row: \[ (2^n - 1, 3^n - 1, 5^n - 1) \] We can see that as \( r \) varies from \( 1 \) to \( n \), the first row will not be identical to the third row for any \( r \). ### Step 5: Compute \( D_r \) To compute \( D_r \), we can use the determinant expansion: \[ D_r = 2^{r-1} \begin{vmatrix} y & z \\ 3^n - 1 & 5^n - 1 \end{vmatrix} - 2(3^{r-1}) \begin{vmatrix} x & z \\ 2^n - 1 & 5^n - 1 \end{vmatrix} + 4(5^{r-1}) \begin{vmatrix} x & y \\ 2^n - 1 & 3^n - 1 \end{vmatrix} \] ### Step 6: Sum \( D_r \) from \( r = 1 \) to \( n \) Now we need to sum \( D_r \) from \( r = 1 \) to \( n \): \[ \sum_{r=1}^n D_r \] ### Step 7: Analyze the result Since the first row and the third row are not identical for any \( r \), we can conclude that the determinant \( D_r \) evaluates to zero for all \( r \): \[ D_r = 0 \] Thus, the sum is: \[ \sum_{r=1}^n D_r = 0 \] ### Final Answer The final answer is: \[ \sum_{r=1}^n D_r = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If D_r=|2^(r-1)2(3^(r-1))4(5^(r-1))x y z2^n-1 3^n-1 5^n-1| then prove that sum_(r=1)^n D_r=0.

Let Delta_(r)=|(2^(r-1),2(3^(r-1)),4(5^(r-1))),(alpha, beta, gamma),(2^(n)-1,3^(n)-1,5^(n)-1)| for r=1,2,………..n . The sum_(r=1)Delta_(r) is

If Delta_r=|[2^(r-1)2 , 3^(r-1) , 4. 5^(r-1)] , [x , y , z] , [2^n-1 , 3^n-1 , 5^n-1]|dot Show that sum_(r=1)^n Delta_r=Con s t a n t

If Delta_(r)=det[[2^(r-1),2.3^(r-1),4.5^(r-1)alpha,beta,gamma2^(n)-1,3^(n)-1,5^(n)-1]], then find

If D_(r)=det[[(1)/(2^(r-1)),(1)/(3^(r-1)),(1)/(5^(r-1))x,y,z2,(3)/(2),(5)/(4)]] then sum_(r=1)^(oo)D_(r) is

If ,y,z2^(r),2xx3^(r),3xx4^(r)2(2^(n)-1),3*(3^(n)-1),4*(4^(n)-1) Find the value of ,sum_(r=1)^(n)Delta_(r)

If D_(r) = |(r,1,(n(n +1))/(2)),(2r -1,4,n^(2)),(2^(r -1),5,2^(n) -1)| , then the value of sum_(r=1)^(n) D_(r) , is

If sum_(r=1)^(n)I(r)=2^(n)-1 then sum_(r=1)^(n)(1)/(I_(r)) is

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If Dr =|(2^(r-1),2(3^(r-1)),4(5^(r-1))),(x,y,z),(2^(n)-1,3^(n)-1,5^(n)...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |