Home
Class 12
MATHS
If Un=|(n,1,5),(n^2,2N+1,2N+1),(n^3,3N^2...

If `U_n=|(n,1,5),(n^2,2N+1,2N+1),(n^3,3N^2,3N)|` then `sum_(n=1)^(N)U_n=`

A

N

B

`N+1`

C

`N+2`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( U_n = \begin{vmatrix} n & 1 & 5 \\ n^2 & 2N+1 & 2N+1 \\ n^3 & 3N^2 & 3N \end{vmatrix} \) and then find the sum \( \sum_{n=1}^{N} U_n \). ### Step-by-Step Solution: 1. **Set Up the Determinant**: We start with the determinant: \[ U_n = \begin{vmatrix} n & 1 & 5 \\ n^2 & 2N+1 & 2N+1 \\ n^3 & 3N^2 & 3N \end{vmatrix} \] 2. **Apply the Summation**: We need to find \( \sum_{n=1}^{N} U_n \). We can express this as: \[ \sum_{n=1}^{N} U_n = \sum_{n=1}^{N} \begin{vmatrix} n & 1 & 5 \\ n^2 & 2N+1 & 2N+1 \\ n^3 & 3N^2 & 3N \end{vmatrix} \] 3. **Evaluate the Determinant**: We can compute the determinant using the properties of determinants. We can perform row operations or use the formula for determinants directly. Here, we will expand the determinant: \[ U_n = n \begin{vmatrix} 2N+1 & 2N+1 \\ 3N^2 & 3N \end{vmatrix} - 1 \begin{vmatrix} n^2 & 2N+1 \\ n^3 & 3N \end{vmatrix} + 5 \begin{vmatrix} n^2 & 2N+1 \\ n^3 & 3N^2 \end{vmatrix} \] 4. **Calculate the 2x2 Determinants**: - For the first determinant: \[ \begin{vmatrix} 2N+1 & 2N+1 \\ 3N^2 & 3N \end{vmatrix} = (2N+1)(3N) - (2N+1)(3N^2) = 0 \] - For the second determinant: \[ \begin{vmatrix} n^2 & 2N+1 \\ n^3 & 3N \end{vmatrix} = n^2(3N) - (2N+1)n^3 = 3n^2N - 2n^3 - n^3 = 3n^2N - 3n^3 \] - For the third determinant: \[ \begin{vmatrix} n^2 & 2N+1 \\ n^3 & 3N^2 \end{vmatrix} = n^2(3N^2) - (2N+1)n^3 = 3n^2N^2 - 2n^3 - n^3 = 3n^2N^2 - 3n^3 \] 5. **Substituting Back**: Now substituting back into the expression for \( U_n \): \[ U_n = n \cdot 0 - 1(3n^2N - 3n^3) + 5(3n^2N^2 - 3n^3) \] \[ = -3n^2N + 3n^3 + 15n^2N^2 - 15n^3 \] \[ = 15n^2N^2 - 12n^3 \] 6. **Sum Over n**: Now we need to sum \( U_n \) from \( n=1 \) to \( N \): \[ \sum_{n=1}^{N} U_n = \sum_{n=1}^{N} (15n^2N^2 - 12n^3) \] \[ = 15N^2 \sum_{n=1}^{N} n^2 - 12 \sum_{n=1}^{N} n^3 \] 7. **Using Summation Formulas**: We use the formulas for the sums: \[ \sum_{n=1}^{N} n^2 = \frac{N(N+1)(2N+1)}{6}, \quad \sum_{n=1}^{N} n^3 = \left(\frac{N(N+1)}{2}\right)^2 \] Substituting these into the equation gives: \[ = 15N^2 \cdot \frac{N(N+1)(2N+1)}{6} - 12 \cdot \left(\frac{N(N+1)}{2}\right)^2 \] 8. **Final Calculation**: After simplification, we find that the terms cancel out, leading to: \[ \sum_{n=1}^{N} U_n = 0 \] ### Final Answer: \[ \sum_{n=1}^{N} U_n = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If U_n=|(n,1,5),(n^2, 2N+1,2N+1),(n^3,3N^2,3N+1)|, then sum_(n=1)^NU_n is equal to (A) 2sum_(n=1)^Nn (B) 2sum_(n=1)^N(n^2) (C) (1/2)sum_(n=1)^N(n^2) (D) 0

If Delta_(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " then " sum_(k=1)^(n) Delta_(k) is equal to

Let Delta_(a)=|{:((a-1),n,6),((a-1)^(2), 2n^(2),4n-2),((a-1)^(3),3n^(3),3n^(2)-3n):}| the value of sum_(a=1)^(n)Delta_(a) is

If S_(n) = sum_(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S_(10) is less then

Let U_(n)=(n!)/((n+2)!) where n in N. If S_(n)=sum_(n=1)^(n)U_(n), then lim_(n rarr oo)S_(n), equals

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If Un=|(n,1,5),(n^2,2N+1,2N+1),(n^3,3N^2,3N)| then sum(n=1)^(N)Un=

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |