Home
Class 12
MATHS
If Deltar=|(2r,x,n(n+1)),(6r^2-1,y,n^2(2...

If `Delta_r=|(2r,x,n(n+1)),(6r^2-1,y,n^2(2n+3)),(4r^3-2nr,z,n^3(n+1))|` then the value of `sum_(r=1)^n Delta_r` is independent of

A

x

B

y

C

z

D

`x , y , z , n`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( \Delta_r \) and then find the value of the summation \( \sum_{r=1}^n \Delta_r \). The determinant is given as: \[ \Delta_r = \begin{vmatrix} 2r & x & n(n+1) \\ 6r^2 - 1 & y & n^2(2n+3) \\ 4r^3 - 2nr & z & n^3(n+1) \end{vmatrix} \] ### Step 1: Expand the Determinant We can expand the determinant using the first column. The determinant can be expressed as: \[ \Delta_r = 2r \begin{vmatrix} y & n^2(2n+3) \\ z & n^3(n+1) \end{vmatrix} - (6r^2 - 1) \begin{vmatrix} x & n(n+1) \\ z & n^3(n+1) \end{vmatrix} + (4r^3 - 2nr) \begin{vmatrix} x & n(n+1) \\ y & n^2(2n+3) \end{vmatrix} \] ### Step 2: Calculate Each 2x2 Determinant 1. **First 2x2 Determinant:** \[ \begin{vmatrix} y & n^2(2n+3) \\ z & n^3(n+1) \end{vmatrix} = y \cdot n^3(n+1) - z \cdot n^2(2n+3) \] 2. **Second 2x2 Determinant:** \[ \begin{vmatrix} x & n(n+1) \\ z & n^3(n+1) \end{vmatrix} = x \cdot n^3(n+1) - z \cdot n(n+1) \] 3. **Third 2x2 Determinant:** \[ \begin{vmatrix} x & n(n+1) \\ y & n^2(2n+3) \end{vmatrix} = x \cdot n^2(2n+3) - y \cdot n(n+1) \] ### Step 3: Substitute Back into the Determinant Now substitute these values back into the expression for \( \Delta_r \): \[ \Delta_r = 2r \left( y \cdot n^3(n+1) - z \cdot n^2(2n+3) \right) - (6r^2 - 1) \left( x \cdot n^3(n+1) - z \cdot n(n+1) \right) + (4r^3 - 2nr) \left( x \cdot n^2(2n+3) - y \cdot n(n+1) \right) \] ### Step 4: Simplify the Expression The expression for \( \Delta_r \) is now a polynomial in \( r \). The coefficients of \( r \) will determine the independence from \( x, y, z, n \). ### Step 5: Sum the Determinants Next, we need to compute the summation \( \sum_{r=1}^n \Delta_r \). Since \( \Delta_r \) is a polynomial in \( r \), we can evaluate the sum of each term separately. ### Step 6: Analyze Independence After evaluating the summation, we will find that the resulting determinant will have columns that are linearly dependent, leading to a determinant value of zero. ### Conclusion Thus, the value of \( \sum_{r=1}^n \Delta_r \) is independent of \( x, y, z, n \) and equals zero.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If Delta_(r) = |(1,r,2^(r)),(2,n,n^(2)),(n,(n(n_1))/(2),2^(n+1))| , then the value of sum_(r=1)^(n) Delta_(r) is

If D_(r) = |(r,1,(n(n +1))/(2)),(2r -1,4,n^(2)),(2^(r -1),5,2^(n) -1)| , then the value of sum_(r=1)^(n) D_(r) , is

If S_r = |[2r,x,n(n+1)],[6r^2-1,y,n^2(2n+3)],[4r^3-2nr,z,n^3(n+1)]| then sum_(r=1)^nS_r does not depend on-

If Delta_r=|(r,2r-1,3r+2),(n/2,n-1,a),(1/2n(n-1),(n-1)^2,1/2(n-1)(3n+4))| then the value of sum_(r=1)^(n-1) Delta_r (1) depends only on n (2) is independent of both a and n (3) depends only on a (4) depends both on a and n

Let Delta_r=|[r , x , (n(n+1))/2] , [2r-1 , y , n^2] , [3r-2 , z , (n(3n-1))/2]|dot Show that sum_(r=1)^n Delta_r=0

If ,y,z2^(r),2xx3^(r),3xx4^(r)2(2^(n)-1),3*(3^(n)-1),4*(4^(n)-1) Find the value of ,sum_(r=1)^(n)Delta_(r)

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If Deltar=|(2r,x,n(n+1)),(6r^2-1,y,n^2(2n+3)),(4r^3-2nr,z,n^3(n+1))| t...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |