Home
Class 12
MATHS
If Deltaa=|(a-1,n,6),((a-1)^2,2n^2,4n-2)...

If `Delta_a=|(a-1,n,6),((a-1)^2,2n^2,4n-2),((a-1)^3,3n^3,3n^2-3n)|` then `sum_(a=1)^n Delta_a` in equal to

A

0

B

1

C

`[(n(n+1))/2][(a(a+1))/2]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \(\Delta_a\) given by: \[ \Delta_a = \begin{vmatrix} a-1 & n & 6 \\ (a-1)^2 & 2n^2 & 4n-2 \\ (a-1)^3 & 3n^3 & 3n^2-3n \end{vmatrix} \] and then find the summation \(\sum_{a=1}^{n} \Delta_a\). ### Step 1: Calculate the Determinant \(\Delta_a\) We will use the determinant formula for a \(3 \times 3\) matrix: \[ \Delta = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \] In our case, we have: - \(a = a-1\), \(b = n\), \(c = 6\) - \(d = (a-1)^2\), \(e = 2n^2\), \(f = 4n-2\) - \(g = (a-1)^3\), \(h = 3n^3\), \(i = 3n^2-3n\) Now substituting these values into the determinant formula: \[ \Delta_a = (a-1) \left( 2n^2(3n^2-3n) - (4n-2)(3n^3) \right) - n \left( (a-1)^2(3n^2-3n) - (4n-2)(a-1)^3 \right) + 6 \left( (a-1)^2(3n^3) - 2n^2(a-1)^3 \right) \] ### Step 2: Simplify the Determinant Now we will simplify each term in the determinant: 1. **First term**: \[ 2n^2(3n^2 - 3n) = 6n^4 - 6n^3 \] \[ (4n - 2)(3n^3) = 12n^4 - 6n^3 \] So, \[ 2n^2(3n^2 - 3n) - (4n - 2)(3n^3) = (6n^4 - 6n^3) - (12n^4 - 6n^3) = -6n^4 \] 2. **Second term**: \[ (a-1)^2(3n^2 - 3n) = 3(a-1)^2(n^2 - n) \] \[ (4n - 2)(a-1)^3 = 4n(a-1)^3 - 2(a-1)^3 \] So, \[ (a-1)^2(3n^2 - 3n) - (4n - 2)(a-1)^3 = 3(a-1)^2(n^2 - n) - (4n - 2)(a-1)^3 \] 3. **Third term**: \[ (a-1)^2(3n^3) - 2n^2(a-1)^3 \] ### Step 3: Combine and Factor After calculating the determinant, we will combine like terms and factor out common factors. This will yield a polynomial in \(a\). ### Step 4: Find the Summation Once we have \(\Delta_a\) expressed as a polynomial in \(a\), we can compute the summation: \[ \sum_{a=1}^{n} \Delta_a \] This can be done using the formula for the sum of powers of integers. ### Final Result The final result will be a polynomial expression in \(n\) after evaluating the summation.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Let Delta_(a)=|{:((a-1),n,6),((a-1)^(2), 2n^(2),4n-2),((a-1)^(3),3n^(3),3n^(2)-3n):}| the value of sum_(a=1)^(n)Delta_(a) is

If Delta_(m) = |(m -1,n,6),((m-1)^(2),2n^(2),4n -2),((m -1)^(3),3n^(3),3n^(2) - 3n)| , then Sigma_(m =1)^(n) Delta_(m) is equal to

Let "Delta"_r=|r-1n6(r-1)^2 2n^2 4n-2(r-1)^2 3n^3 3n^2-3n|dot Show that sum_(r=1)^n"Delta"_r is contant.

If Delta_(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " then " sum_(k=1)^(n) Delta_(k) is equal to

" Let " Delta_(r)=|{:(r-1,,n,,6),((r-1)^(2),,2n^(2),,4n-2),((r-1)^(2),,3n^(3),,3n^(2)-3n):}|. " Show that " Sigma_(r=1)^(n) Delta_(r) is constant.

If Delta_k=|(1,n,n), (2k, n^2+n+1, n^2+n), (2k-1, n^2, n^2+n+1)| and sum_(k=1)^n Delta_k = 56, then n is equal to (i)4 (ii)6 (iii)8 (iv)none

Suppose n epsilon N and for 1lerlen Let Deltar=|(3r-2,2020,3n-1),(2r-1,2025,2n),(r,2029,n+1)| then 1/(3n) sum_(r=1)^(n)(Delta_(r)+6) is equal to __________

Let Delta_(alpha)=det[[(alpha-1),n,6(alpha-1)^(2),2n^(2),4n-2(alpha-1)^(3),3n^( 3),3n^(2)-3n]]

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If Deltaa=|(a-1,n,6),((a-1)^2,2n^2,4n-2),((a-1)^3,3n^3,3n^2-3n)| then ...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |