Home
Class 12
MATHS
The value of the determinant |(a+b,a+2b,...

The value of the determinant `|(a+b,a+2b,a+3b),(a+2b,a+3b,a+4b),(a+4b,a+5b,a+6b)|` is

A

4abc

B

0

C

`a^2+b^2`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} a+b & a+2b & a+3b \\ a+2b & a+3b & a+4b \\ a+4b & a+5b & a+6b \end{vmatrix} \] we can use row and column operations to simplify the determinant. ### Step 1: Apply Column Operations Let's perform the following column operations: - \( C_1 \leftarrow C_1 - C_3 \) - \( C_2 \leftarrow C_2 - C_3 \) This gives us: \[ D = \begin{vmatrix} (a+b) - (a+3b) & (a+2b) - (a+3b) & a+3b \\ (a+2b) - (a+4b) & (a+3b) - (a+4b) & a+4b \\ (a+4b) - (a+6b) & (a+5b) - (a+6b) & a+6b \end{vmatrix} \] Calculating each entry: - First row: - First element: \( (a+b) - (a+3b) = -2b \) - Second element: \( (a+2b) - (a+3b) = -b \) - Second row: - First element: \( (a+2b) - (a+4b) = -2b \) - Second element: \( (a+3b) - (a+4b) = -b \) - Third row: - First element: \( (a+4b) - (a+6b) = -2b \) - Second element: \( (a+5b) - (a+6b) = -b \) So, we have: \[ D = \begin{vmatrix} -2b & -b & a+3b \\ -2b & -b & a+4b \\ -2b & -b & a+6b \end{vmatrix} \] ### Step 2: Factor Out Common Terms Notice that the first two columns have a common factor of \(-b\) and the first column has a common factor of \(-2b\). We can factor these out: \[ D = (-b)(-b)(-2b) \begin{vmatrix} 1 & 1 & a+3b \\ 1 & 1 & a+4b \\ 1 & 1 & a+6b \end{vmatrix} \] This simplifies to: \[ D = 2b^3 \begin{vmatrix} 1 & 1 & a+3b \\ 1 & 1 & a+4b \\ 1 & 1 & a+6b \end{vmatrix} \] ### Step 3: Evaluate the 3x3 Determinant Now, we can evaluate the determinant: \[ \begin{vmatrix} 1 & 1 & a+3b \\ 1 & 1 & a+4b \\ 1 & 1 & a+6b \end{vmatrix} \] Notice that the first two columns are identical, which means the determinant is zero: \[ D = 2b^3 \cdot 0 = 0 \] ### Final Answer Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Without expanding the determinant, prove that |{:(a+b, 2a+b, 3a+b),(2a+b, 3a+b, 4a+b), (4a+b, 5a+b, 6a+b):}|=0.

The determinant |{:(a+b+c,a+b,a),(4a+3b+2c,3a+2b,2a),(10a+6b+3c,6a+3b,3a):}| is independent of which one of the following ?

Without expanding,show that the value of each of the determinants is zero: det[[a+b,2a+b,3a+b2a+b,3a+b,4a+b4a+b,5a+b,6a+b]]

Prove that |[a+b,a+2b,a+3b] , [a+3b,a+4b,a+5b] , [a+5b,a+6b,a+7b]|=0

If a=i,b=omega and C=omega^(2), then the value of determinant det[[a,a+b,a+b+c3a,4a+3b,5a+4b+3c6a,9a+6b,11a+9a+6c]]

The value of the product (4a^(2)+3b)(9b^(2)+4a) at a=1, b=-2 is

the value of the determinant |{:((a_(1)-b_(1))^(2),,(a_(1)-b_(2))^(2),,(a_(1)-b_(3))^(2),,(a_(1)-b_(4))^(2)),((a_(2)-b_(1))^(2),,(a_(2)-b_(2))^(2) ,,(a_(2)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(3)-b_(1))^(2),,(a_(3)-b_(2))^(2),,(a_(3)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(4)-b_(1))^(2),,(a_(4)-b_(2))^(2),,(a_(4)-b_(3))^(2),,(a_(4)-b_(4))^(2)):}| is

The three points [(a+b)(a+2b),(a+b)],[(a+2b)(a+3b),(a+2b)] and [(a+3b)(a+4b),(a+3 b)]

Suppose a,b,c epsilon R and Delta=|(a,a+b,a+b+c),(3a,4a+3b,5a+4b+3c),(6a,9a+6b,11a+9b+6c)| If Delta=11.728 then a=______

Find the value of the products: (4a^(2)+3b)(4a^(2)+3b)ata=1,b=2

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. The value of the determinant |(a+b,a+2b,a+3b),(a+2b,a+3b,a+4b),(a+4b,a...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |