Home
Class 12
MATHS
The value of the determinant Delta=|(log...

The value of the determinant `Delta=|(logx,logy,logz),(log2x,log2y,log2z),(log3x,log3y,log3z)|` is

A

0

B

`log(xyz)`

C

`log(6xyz)`

D

`6log (xyz)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ \Delta = \begin{vmatrix} \log x & \log y & \log z \\ \log 2x & \log 2y & \log 2z \\ \log 3x & \log 3y & \log 3z \end{vmatrix} \] we can simplify the determinant using properties of logarithms. ### Step 1: Apply the logarithm property Using the property of logarithms, \(\log(ab) = \log a + \log b\), we can rewrite the second and third rows: - For the second row: \[ \log 2x = \log 2 + \log x, \quad \log 2y = \log 2 + \log y, \quad \log 2z = \log 2 + \log z \] So, the second row becomes: \[ \begin{pmatrix} \log 2 + \log x & \log 2 + \log y & \log 2 + \log z \end{pmatrix} \] - For the third row: \[ \log 3x = \log 3 + \log x, \quad \log 3y = \log 3 + \log y, \quad \log 3z = \log 3 + \log z \] So, the third row becomes: \[ \begin{pmatrix} \log 3 + \log x & \log 3 + \log y & \log 3 + \log z \end{pmatrix} \] Thus, we can rewrite the determinant as: \[ \Delta = \begin{vmatrix} \log x & \log y & \log z \\ \log 2 + \log x & \log 2 + \log y & \log 2 + \log z \\ \log 3 + \log x & \log 3 + \log y & \log 3 + \log z \end{vmatrix} \] ### Step 2: Perform row operations Next, we can simplify the determinant by performing row operations. We will subtract the first row from the second and third rows: - New second row: \[ (\log 2 + \log x - \log x, \log 2 + \log y - \log y, \log 2 + \log z - \log z) = (\log 2, \log 2, \log 2) \] - New third row: \[ (\log 3 + \log x - \log x, \log 3 + \log y - \log y, \log 3 + \log z - \log z) = (\log 3, \log 3, \log 3) \] So, the determinant now looks like: \[ \Delta = \begin{vmatrix} \log x & \log y & \log z \\ \log 2 & \log 2 & \log 2 \\ \log 3 & \log 3 & \log 3 \end{vmatrix} \] ### Step 3: Factor out common terms Now, we can factor out the common terms from the second and third rows: \[ \Delta = \log 2 \cdot \log 3 \cdot \begin{vmatrix} \log x & \log y & \log z \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} \] ### Step 4: Evaluate the determinant Notice that the second and third rows are identical. Therefore, the determinant of a matrix with two identical rows is zero: \[ \begin{vmatrix} \log x & \log y & \log z \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 0 \] ### Final Result Thus, we have: \[ \Delta = \log 2 \cdot \log 3 \cdot 0 = 0 \] Therefore, the value of the determinant \(\Delta\) is \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Prove that the value of each the following |log x,log y,log zlog2x,log2y,log2zlog3x,log3y,log3z]|

For positive numbers x,y,s the numberical value of the determinant |{:(1,log_(x)y,log_(x)z),(log_(y)x,3,log_(y)z),(log_(z)x,log_(z)y,5):}| is

For positive numbers x,y and z, the numerical value of the determinant det[[log_(x)y,log_(x)zlog_(y)x,1,log_(y)zlog_(z)x,log_(z)y,1]]

For positive numbers x ,\ y\ a n d\ z the numerical value of the determinant |1(log)_x y(log)_x z(log)_y x1(log)_y z(log)_z x(log)_z y1| is- a. 0 b. logx y z c. "log"(x+y+z) d. logx\ logy\ logz

For positive numbers x, y and z, the numerical value of the determinant |{:(1,"log"_(x)y, "log"_(x)z),("log"_(y)x, 1, "log"_(y)z),("log"_(z)x, "log"_(z)y, 1):}| is……

The value of the determinant ,log_(a)((x)/(y)),log_(a)((y)/(z)),log_(a)((z)/(x))log_(b)((y)/(z)),log_(b)((z)/(x)),log_(b)((x)/(y))log_(c)((z)/(x)),log_(c)((x)/(y)),log_(c)((y)/(z))]|

If x , y and z be greater than 1, then the value of |{:(1, log_(x)y, log_(x) z),(log_(y)x , 1 ,log_(y)z),(log_(z)x , log_z y , 1 ):}| =

Suppose x,y,z>1 then least value of log(xyz)[(log x)/(log y log z)+(log y)/(log x log z)+(log z)/(log x log y)]

prove that x^(log y-log z)*y^(log z-log x)*z^(log x-log y)=1

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. The value of the determinant Delta=|(logx,logy,logz),(log2x,log2y,log2...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |