Home
Class 12
MATHS
If A,B,C be the angles of a triangle , ...

If A,B,C be the angles of a triangle , then the value of `Delta=|(-1,cosC,cosB),(cosC,-1,cosA),(cosB,cosA,-1)|` is

A

`cos A cos B cos C`

B

`sin A sinB sinC `

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ \Delta = \begin{vmatrix} -1 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -1 \end{vmatrix} \] we will expand this determinant using the first row. ### Step 1: Expand the Determinant Using the cofactor expansion along the first row, we have: \[ \Delta = -1 \cdot \begin{vmatrix} -1 & \cos A \\ \cos A & -1 \end{vmatrix} - \cos C \cdot \begin{vmatrix} \cos C & \cos A \\ \cos B & -1 \end{vmatrix} + \cos B \cdot \begin{vmatrix} \cos C & -1 \\ \cos B & \cos A \end{vmatrix} \] ### Step 2: Calculate the 2x2 Determinants Now we calculate each of the 2x2 determinants. 1. For the first determinant: \[ \begin{vmatrix} -1 & \cos A \\ \cos A & -1 \end{vmatrix} = (-1)(-1) - (\cos A)(\cos A) = 1 - \cos^2 A = \sin^2 A \] 2. For the second determinant: \[ \begin{vmatrix} \cos C & \cos A \\ \cos B & -1 \end{vmatrix} = (\cos C)(-1) - (\cos A)(\cos B) = -\cos C - \cos A \cos B \] 3. For the third determinant: \[ \begin{vmatrix} \cos C & -1 \\ \cos B & \cos A \end{vmatrix} = (\cos C)(\cos A) - (-1)(\cos B) = \cos C \cos A + \cos B \] ### Step 3: Substitute Back into the Determinant Now substituting these values back into the expression for \(\Delta\): \[ \Delta = -1 \cdot \sin^2 A - \cos C \cdot (-\cos C - \cos A \cos B) + \cos B \cdot (\cos C \cos A + \cos B) \] This simplifies to: \[ \Delta = -\sin^2 A + \cos C(\cos C + \cos A \cos B) + \cos B(\cos C \cos A + \cos B) \] ### Step 4: Simplify Further Now we can simplify further: \[ \Delta = -\sin^2 A + \cos^2 C + \cos C \cos A \cos B + \cos B \cos C \cos A + \cos^2 B \] ### Step 5: Use the Identity \(\sin^2 A + \sin^2 B + \sin^2 C = 1\) Using the identity for angles in a triangle, we can also express \(\sin^2 A\) in terms of \(\cos\): \[ \Delta = \cos^2 A + \cos^2 B + \cos^2 C - 1 \] ### Final Result Thus, the value of the determinant \(\Delta\) is: \[ \Delta = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If A,B and C are angles of a triangle then the determinant |(-1,cosC,cosB),(cosC,-1,cosA),(cosB,cosA,-1)| is equal to

Let A,B,C,D be the angles of a quadrilateral . If they are concyc lic , then the value of cosA+cosB+cosC+cosD is

If A + B + C = 0, then prove that Det [[1, cosC, cosB], [cosC, 1, cosA], [cosB, cosA, 1]] = 0

If A, B, C, D be the angles of acyclic quadrilateral, show that : cosA +cosB+cosC+cosD=0 .

If A,B,C are the angles of a triangle, the system of equations (sinA)x+y+z=cosA , x+(sinB)y+z=cosB , x+y+(sinC)z=1-cosC has

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If A,B,C be the angles of a triangle , then the value of Delta=|(-1,c...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |