Home
Class 12
MATHS
If agt0 , b gt 0 , cgt0 are respectively...

If `agt0 , b gt 0 , cgt0` are respectively the pth , qth , rth terms of G.P., then value of the determinant `|(loga, p ,1),(logb,q,1),(log c,r,1)|` is

A

0

B

1

C

`-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \[ D = \begin{vmatrix} \log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1 \end{vmatrix} \] where \( a, b, c > 0 \) are the \( p \)-th, \( q \)-th, and \( r \)-th terms of a geometric progression (G.P.). ### Step 1: Express the terms of the G.P. Let the first term of the G.P. be \( A \) and the common ratio be \( r \). The \( n \)-th term of a G.P. is given by: \[ T_n = A \cdot r^{n-1} \] Thus, we can express \( a, b, c \) as follows: - \( a = A \cdot r^{p-1} \) (for the \( p \)-th term) - \( b = A \cdot r^{q-1} \) (for the \( q \)-th term) - \( c = A \cdot r^{r-1} \) (for the \( r \)-th term) ### Step 2: Substitute the values into the determinant Now, substituting \( a, b, c \) into the determinant: \[ D = \begin{vmatrix} \log(A \cdot r^{p-1}) & p & 1 \\ \log(A \cdot r^{q-1}) & q & 1 \\ \log(A \cdot r^{r-1}) & r & 1 \end{vmatrix} \] Using the logarithmic property \( \log(xy) = \log x + \log y \), we can rewrite the determinant: \[ D = \begin{vmatrix} \log A + (p-1) \log r & p & 1 \\ \log A + (q-1) \log r & q & 1 \\ \log A + (r-1) \log r & r & 1 \end{vmatrix} \] ### Step 3: Simplify the determinant Now, we can perform row operations to simplify the determinant. We can subtract the first row from the second and third rows: \[ D = \begin{vmatrix} \log A + (p-1) \log r & p & 1 \\ (q - p) \log r & q - p & 0 \\ (r - p) \log r & r - p & 0 \end{vmatrix} \] ### Step 4: Expand the determinant Since the last column contains two zeros, we can expand the determinant along the last column: \[ D = 1 \cdot \begin{vmatrix} (q - p) \log r & q - p \\ (r - p) \log r & r - p \end{vmatrix} \] Calculating this 2x2 determinant: \[ D = (q - p)(r - p) \log r - (r - p)(q - p) \log r = 0 \] ### Conclusion Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If a gt0, bgt0,cgt0 are respectively the p^("th"),q^("th"),r^("th") terms of a G.P.,. Then the value of the determinant |{:(loga, p,1),(logb,q,1),(logc,r,1):}| is

If a,b,c are positive and are the pth, qth and rth terms respectively of a G.P., the the value of |(loga, p, 1),(logb, q, 1),(logc, r, 1)|= (A) 1 (B) pqr(loga+logb+logc) (C) 0 (D) a^pb^qc^r

If a,b,and c are positive and are the pth, qth and rth terms respectively of a GP. Show without expanding that |{:(loga,p,1),(logb,q,1),(logc,r,1):}|=0

If the pth, qth and rth terms of a G.P, are x,y and z repectively, then prove that |{:(logx,p,1),(logy,q,1),(logz,r,1):}|=0

If a,b,c are positive and ar the p^(th),q^(th),r^(th) terms respectively of a G.P show that, |{:(,log a,p,1),(,log b,q,1),(,log c,r,1):}|=0

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If agt0 , b gt 0 , cgt0 are respectively the pth , qth , rth terms of ...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |