Home
Class 12
MATHS
If a,b,c are respectively the pth , qth ...

If a,b,c are respectively the pth , qth and rth terms of an H.P. then
`|(bc,ca,ab),(p,q,r),(1,1,1)|` =

A

abc

B

`p+q+r`

C

0

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant: \[ D = \begin{vmatrix} bc & ca & ab \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix} \] ### Step 1: Write the determinant We start by writing the determinant explicitly: \[ D = \begin{vmatrix} bc & ca & ab \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix} \] ### Step 2: Apply row operations We can perform row operations to simplify the determinant. Let's subtract the third row from the second row: \[ D = \begin{vmatrix} bc & ca & ab \\ p - 1 & q - 1 & r - 1 \\ 1 & 1 & 1 \end{vmatrix} \] ### Step 3: Expand the determinant Now we can expand the determinant along the third row: \[ D = 1 \cdot \begin{vmatrix} bc & ca \\ p - 1 & q - 1 \end{vmatrix} - 1 \cdot \begin{vmatrix} bc & ab \\ p - 1 & r - 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} ca & ab \\ q - 1 & r - 1 \end{vmatrix} \] ### Step 4: Calculate the 2x2 determinants Now we calculate each of the 2x2 determinants: 1. For the first determinant: \[ \begin{vmatrix} bc & ca \\ p - 1 & q - 1 \end{vmatrix} = bc(q - 1) - ca(p - 1) = bcq - bc - cap + ca \] 2. For the second determinant: \[ \begin{vmatrix} bc & ab \\ p - 1 & r - 1 \end{vmatrix} = bc(r - 1) - ab(p - 1) = bcr - bc - abp + ab \] 3. For the third determinant: \[ \begin{vmatrix} ca & ab \\ q - 1 & r - 1 \end{vmatrix} = ca(r - 1) - ab(q - 1) = car - ca - abq + ab \] ### Step 5: Combine the results Now we substitute these back into our expression for \(D\): \[ D = (bcq - bc - cap + ca) - (bcr - bc - abp + ab) + (car - ca - abq + ab) \] ### Step 6: Simplify the expression Now, we simplify the expression: \[ D = bcq - bcr + car - cap - abp + ab + ab - ca \] ### Step 7: Factor out common terms Notice that the terms can be grouped and factored: \[ D = (bcq - bcr) + (car - cap) + (ab - ca - abp + ab) \] ### Step 8: Conclusion After simplification, we can see that the determinant evaluates to zero, as the terms cancel out: \[ D = 0 \] Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If a,b,c be respectively the p^(th),q^(th)andr^(th) terms of a H.P., then Delta=|{:(bc,ca,ab),(p,q,r),(1,1,1):}| equals

If a,b,c be the pth, qth and rth terms respectively of a H.P., the |(bc,p,1),(ca,q,1),(ab,r,1)|= (A) 0 (B) 1 (C) -1 (D) none of these

(iii) If a,bc are respectively the pth,qth and rth terms of the given G.P. then show that (q-r)log a+(r-p)log b+(p-q)log c=0, where a,b,c>0.

If a,b,c be the pth , qth and rth terms of an A.P., then p(b-c) + q(c-a) + r(a-b) equals to :

Suppose a, b, c gt 0 and are respectively the pth, qth and rth terms of a G.P. Let x=(loga)i+(logb)j+(logc)k y=(q-r)i+(r-p)j+(p-q)k If angle between x and y is kpi , then k = ______

If a,b, and c are respectively,the pth,qth, and rth terms of a G.P.,show that (q-r)log a+(r-p)log b+(p-q)log c=0

If p,q,r are in AP then prove that pth,qth and rth terms of any GP are in GP.

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If a,b,c are respectively the pth , qth and rth terms of an H.P. then...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |