Home
Class 12
MATHS
If Tp be the pth term of a G.P. of all +...

If `T_p` be the pth term of a G.P. of all +ive terms then
`Delta = |("log"T_(P + 1),"log" T_(P + 3),"log" T_(P + 5)),("log"T_(P + 3),"log" T_(P + 5),"log" T_(P + 7)),("log"T_(P + 5),"log" T_(P + 7),"log" T_(P + 9))|`
is equal to

A

0

B

1

C

2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by: \[ \Delta = \begin{vmatrix} \log T_{P + 1} & \log T_{P + 3} & \log T_{P + 5} \\ \log T_{P + 3} & \log T_{P + 5} & \log T_{P + 7} \\ \log T_{P + 5} & \log T_{P + 7} & \log T_{P + 9} \end{vmatrix} \] ### Step 1: Express the terms of the G.P. Let the \( p \)-th term of the G.P. be represented as: \[ T_p = ar^{p-1} \] where \( a \) is the first term and \( r \) is the common ratio. Therefore, we can express the logarithmic terms as follows: \[ \log T_{P + 1} = \log(ar^P) = \log a + P \log r \] \[ \log T_{P + 3} = \log(ar^{P + 2}) = \log a + (P + 2) \log r \] \[ \log T_{P + 5} = \log(ar^{P + 4}) = \log a + (P + 4) \log r \] \[ \log T_{P + 7} = \log(ar^{P + 6}) = \log a + (P + 6) \log r \] \[ \log T_{P + 9} = \log(ar^{P + 8}) = \log a + (P + 8) \log r \] ### Step 2: Substitute the logarithmic terms into the determinant Now substituting these expressions into the determinant, we have: \[ \Delta = \begin{vmatrix} \log a + P \log r & \log a + (P + 2) \log r & \log a + (P + 4) \log r \\ \log a + (P + 2) \log r & \log a + (P + 4) \log r & \log a + (P + 6) \log r \\ \log a + (P + 4) \log r & \log a + (P + 6) \log r & \log a + (P + 8) \log r \end{vmatrix} \] ### Step 3: Simplify the determinant Notice that we can factor out \(\log r\) from each column: \[ \Delta = \log r \begin{vmatrix} 1 & P & P + 2 \\ 1 & P + 2 & P + 4 \\ 1 & P + 4 & P + 6 \end{vmatrix} \] ### Step 4: Calculate the determinant Now we can simplify the determinant: \[ \Delta = \log r \begin{vmatrix} 1 & P & P + 2 \\ 1 & P + 2 & P + 4 \\ 1 & P + 4 & P + 6 \end{vmatrix} \] Perform row operations (subtract the first row from the second and the third): \[ = \begin{vmatrix} 1 & P & P + 2 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{vmatrix} \] Now, we see that the second and third rows are identical, which means the determinant is zero: \[ \Delta = 0 \] ### Conclusion Thus, the value of \(\Delta\) is: \[ \Delta = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

l, m,n are the p^(th), q ^(th) and r ^(th) term of a G.P. all positive, then |{:(logl, p, 1),(log m, q, 1),(log n ,r,1):}| equals :

10^(log_(p)(log_(q)(log_(r)x)))=1 and log_(q)(log_(r)(log_(p)x))=0 then p equals to:

log_(a)((P)/(Q))=log_(a)P-log_(a)Q

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If Tp be the pth term of a G.P. of all +ive terms then Delta = |("lo...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |