Home
Class 12
MATHS
If a1,a2,…..an are in G.P. then Delta...

If `a_1,a_2,…..a_n` are in G.P. then
`Delta = |("log"a_(n),"log" a_(n + 1),"log" a_(n + 2)),("log"a_(n + 3),"log" a_(n + 4),"log" a_(n + 5)),("log"a_(n + 6),"log" a_(n + 7),"log"a_(n + 8))|`

A

4

B

2

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given that \( a_1, a_2, \ldots, a_n \) are in a geometric progression (G.P.). ### Step-by-Step Solution: 1. **Understanding the terms in G.P.**: Since \( a_1, a_2, \ldots, a_n \) are in G.P., we can express the terms as: \[ a_n = a \cdot r^{n-1}, \quad a_{n+1} = a \cdot r^n, \quad a_{n+2} = a \cdot r^{n+1}, \quad a_{n+3} = a \cdot r^{n+2}, \quad a_{n+4} = a \cdot r^{n+3}, \quad a_{n+5} = a \cdot r^{n+4}, \quad a_{n+6} = a \cdot r^{n+5}, \quad a_{n+7} = a \cdot r^{n+6}, \quad a_{n+8} = a \cdot r^{n+7} \] 2. **Setting up the determinant**: The determinant we need to evaluate is: \[ \Delta = \begin{vmatrix} \log a_n & \log a_{n+1} & \log a_{n+2} \\ \log a_{n+3} & \log a_{n+4} & \log a_{n+5} \\ \log a_{n+6} & \log a_{n+7} & \log a_{n+8} \end{vmatrix} \] Substituting the expressions for \( a_n, a_{n+1}, \ldots, a_{n+8} \): \[ \Delta = \begin{vmatrix} \log(a \cdot r^{n-1}) & \log(a \cdot r^n) & \log(a \cdot r^{n+1}) \\ \log(a \cdot r^{n+2}) & \log(a \cdot r^{n+3}) & \log(a \cdot r^{n+4}) \\ \log(a \cdot r^{n+5}) & \log(a \cdot r^{n+6}) & \log(a \cdot r^{n+7}) \end{vmatrix} \] 3. **Using logarithmic properties**: Using the property \( \log(ab) = \log a + \log b \): \[ \Delta = \begin{vmatrix} \log a + (n-1) \log r & \log a + n \log r & \log a + (n+1) \log r \\ \log a + (n+2) \log r & \log a + (n+3) \log r & \log a + (n+4) \log r \\ \log a + (n+5) \log r & \log a + (n+6) \log r & \log a + (n+7) \log r \end{vmatrix} \] 4. **Simplifying the determinant**: Let \( \log a = A \) and \( \log r = B \): \[ \Delta = \begin{vmatrix} A + (n-1)B & A + nB & A + (n+1)B \\ A + (n+2)B & A + (n+3)B & A + (n+4)B \\ A + (n+5)B & A + (n+6)B & A + (n+7)B \end{vmatrix} \] This can be rewritten as: \[ \Delta = \begin{vmatrix} A & A & A \\ A & A & A \\ A & A & A \end{vmatrix} + B \cdot \begin{vmatrix} n-1 & n & n+1 \\ n+2 & n+3 & n+4 \\ n+5 & n+6 & n+7 \end{vmatrix} \] 5. **Identifying linear dependence**: The first determinant is zero because all rows are identical. Therefore: \[ \Delta = B \cdot \begin{vmatrix} n-1 & n & n+1 \\ n+2 & n+3 & n+4 \\ n+5 & n+6 & n+7 \end{vmatrix} \] The second determinant can be shown to be zero as well because the rows are linearly dependent (the differences between the rows are constant). 6. **Conclusion**: Since both determinants evaluate to zero, we conclude that: \[ \Delta = 0 \] ### Final Answer: \[ \Delta = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3)… are in G.P. then the value of |{:(log a_(n),loga_(n+1),log a_(n+2)),(log a_(n+3),log a_(n+4),log a_(n+5)),(log a_(n+6),log a_(n+7),log a_(n+8)):}| is

If a_(1),a_(2),a_(3),...... are in G.P.then the value of determinant det[[log(a_(n)),log(a_(n+1)),log(a_(n+2))log(a_(n+3)),log(a_(n+4)),log(a_(n+5))log(a_(n+6)),log(a_(n+7)),log(a_(n+8))]] equals

If a_(1),a_(2),a_(3),……….a_(n) ………… are in G.P and a_(i) gt 0 then the value of the determinant |(loga_(n),log a_(n+1),loga_(n+2)),(loga_(n+1),loga_(n+2),loga_(n+3)),(loga_(n+2),loga_(n+3),loga_(n+4))| is

If a_1,a_2,a_3,….,a_n are in G.P. are in a_i > 0 for each I, then the determinant Delta=|{:(loga_n,log a_(n+2),log a_(n+4)),(log a_(n+6),log a_(n+8), log a_(n+10)),(log a_(n+12), log a_(n+14), loga_(n+16)):}|

If a_(1),a_(2),a_(3),.... are in G.P. with common ratio as r^(2) then log a_(1),log a_(2),log a_(3),.... will be in

"If "a_1,a_2,a_3,.....,a_n" are in AP, prove that "a_(1)+a_(n)=a_(r)+a_(n-r+1)""

If a_(n) gt a_(n-1) gt …. gt a_(2) gt a_(1) gt 1 , then the value of "log"_(a_(1))"log"_(a_(2)) "log"_(a_(3))…."log"_(a_(n)) is equal to

If a_(1), a_(2), a_(3), …., a_(9) are in GP, then what is the value of the following determinant? |(ln a_(1), ln a_(2), ln a_(3)),(lna_(4), lna_(5), ln a_(6)), (ln a_(7), ln a_(8), ln a_(9))|

If a_(1),a_(2),...a_(n) are in H.P then the expression a_(1)a_(2)+a_(2)a_(3)+...+a_(n-1)a_(n) is equal to

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If a1,a2,…..an are in G.P. then Delta = |("log"a(n),"log" a(n + 1),...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |