Home
Class 12
MATHS
The value of |(t1,t2,t3),(t2,t3,t4),(t3,...

The value of `|(t_1,t_2,t_3),(t_2,t_3,t_4),(t_3,t_4,t_5)|+|(T_1,T_2,T_3),(T_2,T_3,T_4),(T_3,T_4,T_5)|` where `t_i` s are in A.P. (a,d) and `T_k` s are in G.P (A.R) is

A

a + A

B

d + R

C

0

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ |(t_1,t_2,t_3),(t_2,t_3,t_4),(t_3,t_4,t_5)| + |(T_1,T_2,T_3),(T_2,T_3,T_4),(T_3,T_4,T_5)| \] where \( t_i \) are in Arithmetic Progression (A.P.) and \( T_k \) are in Geometric Progression (G.P.). ### Step 1: Define the terms in A.P. Let the first term of the A.P. be \( a \) and the common difference be \( d \). Then we can express the terms as: - \( t_1 = a \) - \( t_2 = a + d \) - \( t_3 = a + 2d \) - \( t_4 = a + 3d \) - \( t_5 = a + 4d \) ### Step 2: Set up the determinant for A.P. The first determinant can be set up as follows: \[ D_1 = |(t_1, t_2, t_3), (t_2, t_3, t_4), (t_3, t_4, t_5)| \] Substituting the values of \( t_i \): \[ D_1 = |(a, a + d, a + 2d), (a + d, a + 2d, a + 3d), (a + 2d, a + 3d, a + 4d)| \] ### Step 3: Simplify the determinant for A.P. We can perform row operations to simplify the determinant. Let's subtract the first row from the second and the second row from the third: \[ D_1 = |(a, a + d, a + 2d), (d, d, d), (d, d, d)| \] ### Step 4: Evaluate the determinant for A.P. Notice that the second and third rows are identical. Therefore, the determinant is zero: \[ D_1 = 0 \] ### Step 5: Define the terms in G.P. Let the first term of the G.P. be \( A \) and the common ratio be \( r \). Then we can express the terms as: - \( T_1 = A \) - \( T_2 = Ar \) - \( T_3 = Ar^2 \) - \( T_4 = Ar^3 \) - \( T_5 = Ar^4 \) ### Step 6: Set up the determinant for G.P. The second determinant can be set up as follows: \[ D_2 = |(T_1, T_2, T_3), (T_2, T_3, T_4), (T_3, T_4, T_5)| \] Substituting the values of \( T_k \): \[ D_2 = |(A, Ar, Ar^2), (Ar, Ar^2, Ar^3), (Ar^2, Ar^3, Ar^4)| \] ### Step 7: Simplify the determinant for G.P. Again, we can perform row operations. Subtract the first row from the second and the second row from the third: \[ D_2 = |(A, Ar, Ar^2), (0, Ar^2 - Ar, Ar^3 - Ar^2), (0, Ar^3 - Ar^2, Ar^4 - Ar^3)| \] This simplifies to: \[ D_2 = |(A, Ar, Ar^2), (0, Ar( r - 1), Ar^2(r - 1))| \] ### Step 8: Evaluate the determinant for G.P. Notice that the first column has a zero in the second and third rows, which indicates that the determinant is also zero: \[ D_2 = 0 \] ### Step 9: Combine the results Now, we can combine the results of both determinants: \[ D_1 + D_2 = 0 + 0 = 0 \] ### Final Answer Thus, the final value is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

The vertices of a triangle are [a t_1t_2,a(t_1 +t_2)], [a t_2t_3,a(t_2 +t_3)], [a t_3t_1,a(t_3 +t_1)] Then the orthocenter of the triangle is (a) (-a, a(t_1+t_2+t_3)-at_1t_2t_3) (b) (-a, a(t_1+t_2+t_3)+at_1t_2t_3) (c) (a, a(t_1+t_2+t_3)+at_1t_2t_3) (d) (a, a(t_1+t_2+t_3)-at_1t_2t_3)

If S=(t^(3))/(3)-2t^(2)+3t+4 , then

If for a G.P. { t_(n)}, t_(7) : t_(4) =27 and S_(5) =242, and t_(3) .

The value of t such the matrix ([1,3,2],[2,5,t],[4,7-t,-6]) has no inverse,are

Let T_(k)=sin^(k)x+cos^(k)x For all x if T_(1)T_(5)+T_(3)T_(5)=T_(1)T_(7)+T_(3)T_(n) then n=

If P(S) = 0.3, P(T) = 0.4, S and T are independent events, then P(S/T)

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. The value of |(t1,t2,t3),(t2,t3,t4),(t3,t4,t5)|+|(T1,T2,T3),(T2,T3,T4)...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |