Home
Class 12
MATHS
If t1, t2 ,t3 are in A.P. (a,d) and T1,T...

If `t_1, t_2 ,t_3` are in A.P. (a,d) and `T_1,T_2,T_3` are in H.P. then the value of
`Delta=|(t_1-T_1,t_1-T_2,t_1-T_3),(t_2-T_1,t_2-T_2,t_2-T_3),(t_3-T_1,t_3-T_2,t_3-T_3)|`

A

a + d

B

`a^2+d^2`

C

0

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by: \[ \Delta = \begin{vmatrix} t_1 - T_1 & t_1 - T_2 & t_1 - T_3 \\ t_2 - T_1 & t_2 - T_2 & t_2 - T_3 \\ t_3 - T_1 & t_3 - T_2 & t_3 - T_3 \end{vmatrix} \] ### Step 1: Understanding the terms Given that \( t_1, t_2, t_3 \) are in arithmetic progression (A.P.), we can express them as: - \( t_1 = a \) - \( t_2 = a + d \) - \( t_3 = a + 2d \) Also, since \( T_1, T_2, T_3 \) are in harmonic progression (H.P.), we can express them as: - \( T_1 = \frac{2ab}{a+b} \) - \( T_2 = \frac{2bc}{b+c} \) - \( T_3 = \frac{2ac}{a+c} \) However, for the determinant, we will keep \( T_1, T_2, T_3 \) as they are for now. ### Step 2: Substitute the values into the determinant Substituting \( t_1, t_2, t_3 \) into the determinant gives: \[ \Delta = \begin{vmatrix} a - T_1 & a - T_2 & a - T_3 \\ (a + d) - T_1 & (a + d) - T_2 & (a + d) - T_3 \\ (a + 2d) - T_1 & (a + 2d) - T_2 & (a + 2d) - T_3 \end{vmatrix} \] ### Step 3: Row operations We can perform row operations to simplify the determinant. We will replace \( R_1 \) with \( R_1 - R_3 \) and \( R_2 \) with \( R_2 - R_3 \): \[ \Delta = \begin{vmatrix} (a - T_1) - ((a + 2d) - T_1) & (a - T_2) - ((a + 2d) - T_2) & (a - T_3) - ((a + 2d) - T_3) \\ (a + d) - T_1 & (a + d) - T_2 & (a + d) - T_3 \\ (a + 2d) - T_1 & (a + 2d) - T_2 & (a + 2d) - T_3 \end{vmatrix} \] This simplifies to: \[ \Delta = \begin{vmatrix} -2d & -2d & -2d \\ (a + d) - T_1 & (a + d) - T_2 & (a + d) - T_3 \\ (a + 2d) - T_1 & (a + 2d) - T_2 & (a + 2d) - T_3 \end{vmatrix} \] ### Step 4: Factor out common terms Now we can factor out \(-2d\) from the first row: \[ \Delta = -2d \begin{vmatrix} 1 & 1 & 1 \\ (a + d) - T_1 & (a + d) - T_2 & (a + d) - T_3 \\ (a + 2d) - T_1 & (a + 2d) - T_2 & (a + 2d) - T_3 \end{vmatrix} \] ### Step 5: Evaluate the determinant Notice that the first row is now all ones. We can perform another row operation by replacing \( R_2 \) with \( R_2 - R_3 \): \[ \Delta = -2d \begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ (a + 2d) - T_1 & (a + 2d) - T_2 & (a + 2d) - T_3 \end{vmatrix} \] Since the second row is now all zeros, the value of the determinant is: \[ \Delta = 0 \] ### Final Answer Thus, the value of \(\Delta\) is: \[ \Delta = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

The vertices of a triangle are [a t_1t_2,a(t_1 +t_2)], [a t_2t_3,a(t_2 +t_3)], [a t_3t_1,a(t_3 +t_1)] Then the orthocenter of the triangle is (a) (-a, a(t_1+t_2+t_3)-at_1t_2t_3) (b) (-a, a(t_1+t_2+t_3)+at_1t_2t_3) (c) (a, a(t_1+t_2+t_3)+at_1t_2t_3) (d) (a, a(t_1+t_2+t_3)-at_1t_2t_3)

If t_(1),t_(2) and t_(3) are distinct, the points (t_(1)2at_(1)+at_(1)^(3)), (t_(2),2"at"_(2)+"at_(2)^(3)) and (t_(3) ,2at_(3)+at_(3)^(3))

If the orthocentre of the triangle formed by the points t_1,t_2,t_3 on the parabola y^2=4ax is the focus, the value of |t_1t_2+t_2t_3+t_3t_1| is

If t_0,t_1, t_2,...,t_n are the terms in the expansion of (x+a)^n then prove that (t_0-t_2+t_4-...)^2+(t_1-t_3+t_5-...)^2=(x^2+a^2)^n .

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If t1, t2 ,t3 are in A.P. (a,d) and T1,T2,T3 are in H.P. then the valu...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |