Home
Class 12
MATHS
|(265,240,219),(240,225,198),(219,198,18...

`|(265,240,219),(240,225,198),(219,198,181)|=`

A

779

B

679

C

0

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} 265 & 240 & 219 \\ 240 & 225 & 198 \\ 219 & 198 & 181 \end{vmatrix} \] we can use the method of cofactor expansion along the first row. ### Step 1: Write the determinant \[ D = 265 \begin{vmatrix} 225 & 198 \\ 198 & 181 \end{vmatrix} - 240 \begin{vmatrix} 240 & 198 \\ 219 & 181 \end{vmatrix} + 219 \begin{vmatrix} 240 & 225 \\ 219 & 198 \end{vmatrix} \] ### Step 2: Calculate the 2x2 determinants 1. **First determinant**: \[ \begin{vmatrix} 225 & 198 \\ 198 & 181 \end{vmatrix} = (225 \cdot 181) - (198 \cdot 198) \] Calculating this: \[ = 40725 - 39204 = 1521 \] 2. **Second determinant**: \[ \begin{vmatrix} 240 & 198 \\ 219 & 181 \end{vmatrix} = (240 \cdot 181) - (198 \cdot 219) \] Calculating this: \[ = 43320 - 43482 = -162 \] 3. **Third determinant**: \[ \begin{vmatrix} 240 & 225 \\ 219 & 198 \end{vmatrix} = (240 \cdot 198) - (225 \cdot 219) \] Calculating this: \[ = 47520 - 49375 = -1855 \] ### Step 3: Substitute back into the determinant equation Now substitute the values of the 2x2 determinants back into the equation for \(D\): \[ D = 265 \cdot 1521 - 240 \cdot (-162) + 219 \cdot (-1855) \] Calculating each term: 1. \(265 \cdot 1521 = 403265\) 2. \(-240 \cdot (-162) = 38880\) 3. \(219 \cdot (-1855) = -406365\) ### Step 4: Combine the results Now combine these results: \[ D = 403265 + 38880 - 406365 \] Calculating this gives: \[ D = 403265 + 38880 - 406365 = 38880 \] ### Final Result Thus, the value of the determinant is \[ \boxed{38880} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Find the values of the following determinants : (i) |{:(12,3,4),(16,5,0),(21,-1,2):}| (ii) |{:(256,240,219),(240,225,198),(219,198,181):}| (iii) |{:(17,19,24),(6,8,13),(-1,1,6):}| (iv) |{:(67,19,21),(39,13,14),(81,24,26):}| (v) |{:(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),omega,1):}|" where "omega "is a cube root of unity". (iv) |{:(1,x,y),(0,(2pi)/5,sin(pi)/10),(0,sin((2pi)/5),cos(pi)/10):}|

(198)^(3)

|[225, 240, 189] , [210, 225, 204] , [212, 252, 188]|

Evaluate |(219,117,345),(19,9,34),(7,3,10)|.

Evaluate: |(219,117,345),(19,9,34),(7,3,6)|

45, 99, 153, 198, 222, 333

150, 160, 191, 214, 240, 240, 270, 305

(198xx198-102xx102)/(96)

40% of ? =240

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. |(265,240,219),(240,225,198),(219,198,181)|=

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |