Home
Class 12
MATHS
The value of the determinant Delta=|(1!,...

The value of the determinant `Delta=|(1!,2!,3!),(2!,3!,4!),(3!,4!,5!)|` is

A

`2!`

B

`3!`

C

`4!`

D

`5!`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ \Delta = \begin{vmatrix} 1! & 2! & 3! \\ 2! & 3! & 4! \\ 3! & 4! & 5! \end{vmatrix} \] we will first calculate the factorial values and then evaluate the determinant. ### Step 1: Calculate the factorial values We know: - \(1! = 1\) - \(2! = 2\) - \(3! = 6\) - \(4! = 24\) - \(5! = 120\) Substituting these values into the determinant gives: \[ \Delta = \begin{vmatrix} 1 & 2 & 6 \\ 2 & 6 & 24 \\ 6 & 24 & 120 \end{vmatrix} \] ### Step 2: Factor out common terms from each row We can factor out common terms from each row: - From the first row, we can factor out \(1\) (no change). - From the second row, we can factor out \(2\). - From the third row, we can factor out \(6\). This gives us: \[ \Delta = 1 \cdot 2 \cdot 6 \cdot \begin{vmatrix} 1 & 2 & 6 \\ 1 & 3 & 12 \\ 1 & 4 & 20 \end{vmatrix} \] ### Step 3: Simplify the determinant Now we have: \[ \Delta = 12 \cdot \begin{vmatrix} 1 & 2 & 6 \\ 1 & 3 & 12 \\ 1 & 4 & 20 \end{vmatrix} \] ### Step 4: Expand the determinant We can expand the determinant along the first column: \[ \Delta = 12 \cdot \left( 1 \cdot \begin{vmatrix} 3 & 12 \\ 4 & 20 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 6 \\ 4 & 20 \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & 6 \\ 3 & 12 \end{vmatrix} \right) \] Calculating each of these 2x2 determinants: 1. \(\begin{vmatrix} 3 & 12 \\ 4 & 20 \end{vmatrix} = (3 \cdot 20) - (12 \cdot 4) = 60 - 48 = 12\) 2. \(\begin{vmatrix} 2 & 6 \\ 4 & 20 \end{vmatrix} = (2 \cdot 20) - (6 \cdot 4) = 40 - 24 = 16\) 3. \(\begin{vmatrix} 2 & 6 \\ 3 & 12 \end{vmatrix} = (2 \cdot 12) - (6 \cdot 3) = 24 - 18 = 6\) ### Step 5: Substitute back into the determinant Now substituting back: \[ \Delta = 12 \cdot (1 \cdot 12 - 1 \cdot 16 + 1 \cdot 6) = 12 \cdot (12 - 16 + 6) = 12 \cdot 2 = 24 \] ### Final Result Thus, the value of the determinant \(\Delta\) is: \[ \Delta = 24 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

What is the value of determinant |(1!,2!,3!),(2!,3!,4!),(3!,4!,5!)| ?

Find the value of the determinant: |(4,-2),(3,1)|

Find the value of the determinant |{:(4,3),(2,7):}| .

The value of the determinant |{:(1+x,2,3,4),(1,2+x,3,4),(1,2,3+x,4),(1,2,3,4+x):}| is

Evaluate the determinant Delta=det[[1,2,4-1,3,04,1,0]]

Find the value of the determinants: |{:(1/4,-2/3),(-1/2,1/3):}|

Find minor or element 5 in the determinant Delta=|{:(2,4,3),(1,5,2),(-1,4,1):}|

Find the values of the following determinants |{:(1,1,1),(5,-3,1),(7,4,-2):}|

The value of the determinant |{:(1^(2),2^(2),3^(2),4^(2)),(2^(2),3^(2),4^(2),5^(2)),(3^(2),4^(2),5^(2),6^(2)),(4^(2),5^(2),6^(2),7^(2)):}| is

Find the value of the determinant |[2,-3,6],[3,-4,-11],[5,2,4]| .

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. The value of the determinant Delta=|(1!,2!,3!),(2!,3!,4!),(3!,4!,5!)| ...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |