Home
Class 12
MATHS
|(6i,-3i,1),(4,3i,-1),(20,3,i)| = x + iy...

`|(6i,-3i,1),(4,3i,-1),(20,3,i)|` = x + iy then (x,y) is

A

(3,1)

B

(1,3)

C

(0,3)

D

(0,0)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( |(6i, -3i, 1), (4, 3i, -1), (20, 3, i)| \) and express it in the form \( x + iy \), we will follow these steps: ### Step 1: Write down the determinant We start with the determinant: \[ D = \begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} \] ### Step 2: Apply row operations We will perform a row operation to simplify the determinant. Let's add the second row to the first row: \[ R_1 \rightarrow R_1 + R_2 \] This gives us: \[ D = \begin{vmatrix} (6i + 4) & (-3i + 3i) & (1 - 1) \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} (6i + 4) & 0 & 0 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} \] ### Step 3: Calculate the determinant Since the first row has two zeros, we can expand the determinant along the first row: \[ D = (6i + 4) \cdot \begin{vmatrix} 3i & -1 \\ 3 & i \end{vmatrix} \] Now we need to calculate the 2x2 determinant: \[ \begin{vmatrix} 3i & -1 \\ 3 & i \end{vmatrix} = (3i)(i) - (-1)(3) = 3i^2 + 3 = 3(-1) + 3 = -3 + 3 = 0 \] ### Step 4: Substitute back into the determinant Now substituting back, we have: \[ D = (6i + 4) \cdot 0 = 0 \] ### Step 5: Express in the form \( x + iy \) Since \( D = 0 \), we can express it as: \[ 0 = 0 + 0i \] Thus, we have \( x = 0 \) and \( y = 0 \). ### Final Answer The values of \( (x, y) \) are: \[ (x, y) = (0, 0) \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If x + iy=|{:(6i,-3i,1),(4,3i,-1),(20,3,i):}| , then what is x - iy equal to ?

If |{:(6i,-3i,1),(4,3i,-1),(20,3,i):}|=x+iy,i=sqrt(-1) then

|(3,-3i,x),(4,y,i),(0,2i,-i)|=18+11i is true of (A) x=1,y=2 (B) x=1,y=-1 (C) x=-1,y=1 (D) x=0,y=3

x+iy=det[[6i,-3i,14,3i,-120,3,i]], find x and y

If |6i-3i143i-1203i|=x+iy, then a.x=3,y=1 b.x=1,y=3 c.x=0,y=3 d.x=0,y=0

If |(x,-3i,1),(y,1,i),(0,2i,-i)|=6+11i . then what are the value of x and y respectively ?

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. |(6i,-3i,1),(4,3i,-1),(20,3,i)| = x + iy then (x,y) is

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |