Home
Class 12
MATHS
The value of the determinant |(sqrt6,2i...

The value of the determinant `|(sqrt6,2i,3+sqrt6),(sqrt12,sqrt3+sqrt8i,3sqrt2+sqrt6i),(sqrt18,sqrt2+sqrt12i,sqrt27+2i)|` is

A

complex

B

real

C

irrational

D

rational

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} \sqrt{6} & 2i & 3 + \sqrt{6} \\ \sqrt{12} & \sqrt{3} + \sqrt{8}i & 3\sqrt{2} + \sqrt{6}i \\ \sqrt{18} & \sqrt{2} + \sqrt{12}i & \sqrt{27} + 2i \end{vmatrix} \] we will perform row operations to simplify the determinant. ### Step 1: Row Operations We will apply the following row operations: - \( R_2 \leftarrow R_2 - \sqrt{2} R_1 \) - \( R_3 \leftarrow R_3 - \sqrt{3} R_1 \) This will help us eliminate the first column entries of \( R_2 \) and \( R_3 \). ### Step 2: Calculate New Rows Calculating the new rows: - For \( R_2 \): - First element: \( \sqrt{12} - \sqrt{2} \cdot \sqrt{6} = \sqrt{12} - \sqrt{12} = 0 \) - Second element: \( (\sqrt{3} + \sqrt{8}i) - \sqrt{2} \cdot 2i = \sqrt{3} + \sqrt{8}i - 2\sqrt{2}i = \sqrt{3} + (\sqrt{8} - 2\sqrt{2})i = \sqrt{3} + 0i = \sqrt{3} \) - Third element: \( (3\sqrt{2} + \sqrt{6}i) - \sqrt{2} \cdot (3 + \sqrt{6}) = 3\sqrt{2} + \sqrt{6}i - (3\sqrt{2} + \sqrt{12}) = \sqrt{6}i - \sqrt{12} = \sqrt{6}i - 2\sqrt{3} \) - For \( R_3 \): - First element: \( \sqrt{18} - \sqrt{3} \cdot \sqrt{6} = \sqrt{18} - \sqrt{18} = 0 \) - Second element: \( (\sqrt{2} + \sqrt{12}i) - \sqrt{3} \cdot 2i = \sqrt{2} + \sqrt{12}i - 2\sqrt{3}i = \sqrt{2} + (\sqrt{12} - 2\sqrt{3})i = \sqrt{2} + 0i = \sqrt{2} \) - Third element: \( (\sqrt{27} + 2i) - \sqrt{3} \cdot (3 + \sqrt{6}) = \sqrt{27} + 2i - (3\sqrt{3} + \sqrt{18}) = 3\sqrt{3} + 2i - (3\sqrt{3} + 3) = 2i - 3 \) Now, the determinant becomes: \[ D = \begin{vmatrix} \sqrt{6} & 2i & 3 + \sqrt{6} \\ 0 & \sqrt{3} & \sqrt{6}i - 2\sqrt{3} \\ 0 & \sqrt{2} & 2i - 3 \end{vmatrix} \] ### Step 3: Expand the Determinant Since the first column has two zeros, we can expand along the first column: \[ D = \sqrt{6} \cdot \begin{vmatrix} \sqrt{3} & \sqrt{6}i - 2\sqrt{3} \\ \sqrt{2} & 2i - 3 \end{vmatrix} \] ### Step 4: Calculate the 2x2 Determinant Calculating the 2x2 determinant: \[ \begin{vmatrix} \sqrt{3} & \sqrt{6}i - 2\sqrt{3} \\ \sqrt{2} & 2i - 3 \end{vmatrix} = \sqrt{3}(2i - 3) - \sqrt{2}(\sqrt{6}i - 2\sqrt{3}) \] Expanding this gives: \[ = 2\sqrt{3}i - 3\sqrt{3} - \sqrt{12}i + 2\sqrt{6} \] ### Step 5: Combine Terms Now we combine the terms: \[ = (2\sqrt{3} - \sqrt{12})i + (2\sqrt{6} - 3\sqrt{3}) \] ### Step 6: Final Calculation Substituting back into the determinant: \[ D = \sqrt{6} \left( (2\sqrt{3} - \sqrt{12})i + (2\sqrt{6} - 3\sqrt{3}) \right) \] Calculating the final value of the determinant will yield a real number. After simplification, we find that the value of the determinant is: \[ D = -6 \] ### Final Answer Thus, the value of the determinant is: \[ \boxed{-6} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If Delta=|(sqrt6,2i,3+sqrt6),(sqrt12,sqrt3+sqrt8i,3sqrt2+sqrt6i),(sqrt18,sqrt2+sqrt12i,sqrt27+2i)| then Delta is (i^2=-1)

The value of the determinant |{:(sqrt(6),2i,3+sqrt(6)i),(sqrt(12),sqrt(3)+sqrt(8)i,3sqrt(2)+sqrt(6)i),(sqrt(18),sqrt(2)+sqrt(12)i,sqrt(27)+2i):}| is (where i= sqrt(-1)

(3sqrt2+sqrt3-sqrt6)/(2sqrt3-3sqrt2+sqrt6)=

sqrt(i)-sqrt(-i)=sqrt(2)

sqrt(i)+sqrt(-i)=sqrt(2)

(sqrt(3)-i sqrt(2))/(2sqrt(3)-i sqrt(2))

The value of 5 sqrt3+7 sqrt2- sqrt6-23/(sqrt2 +sqrt3+ sqrt6) is:- 5 sqrt3+7 sqrt2- sqrt6-23/(sqrt2 +sqrt3+ sqrt6) का मान क्या होगा ?

The value of 2(sqrt(2)+sqrt(6))/(3sqrt(2+sqrt(3)))+sqrt(2+sqrt(3))+sqrt(2-sqrt(3))

(-sqrt3 + sqrt(-2))(2sqrt3-i)

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. The value of the determinant |(sqrt6,2i,3+sqrt6),(sqrt12,sqrt3+sqrt8i...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |