Home
Class 12
MATHS
If f(x) = |(a,-1,0),(ax,a,-1),(ax^2,ax,a...

If `f(x) = |(a,-1,0),(ax,a,-1),(ax^2,ax,a)|` then f (2x) - f (x) is equal to

A

ax

B

`ax(2a+3x)`

C

`ax(2+3x)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( f(2x) - f(x) \) given the determinant \( f(x) = |(a, -1, 0), (ax, a, -1), (ax^2, ax, a)| \). ### Step 1: Calculate \( f(x) \) We start with the determinant: \[ f(x) = \begin{vmatrix} a & -1 & 0 \\ ax & a & -1 \\ ax^2 & ax & a \end{vmatrix} \] ### Step 2: Expand the determinant Using the properties of determinants, we can expand this determinant. We can take \( a \) common from the first column: \[ f(x) = a \begin{vmatrix} 1 & -1 & 0 \\ x & a & -1 \\ x^2 & x & a \end{vmatrix} \] ### Step 3: Expand the determinant further Now we need to expand this determinant. We can use the first row for expansion: \[ = a \left( 1 \cdot \begin{vmatrix} a & -1 \\ x & a \end{vmatrix} + 1 \cdot \begin{vmatrix} x & -1 \\ x^2 & a \end{vmatrix} \right) \] Calculating the first 2x2 determinant: \[ \begin{vmatrix} a & -1 \\ x & a \end{vmatrix} = a^2 + x \] Calculating the second 2x2 determinant: \[ \begin{vmatrix} x & -1 \\ x^2 & a \end{vmatrix} = ax + x^2 \] ### Step 4: Combine results Now substituting back into our expression: \[ f(x) = a \left( a^2 + x + ax + x^2 \right) = a(a^2 + (a + 1)x + x^2) \] ### Step 5: Calculate \( f(2x) \) Now, we replace \( x \) with \( 2x \): \[ f(2x) = a \left( a^2 + (a + 1)(2x) + (2x)^2 \right) = a \left( a^2 + 2(a + 1)x + 4x^2 \right) \] ### Step 6: Calculate \( f(2x) - f(x) \) Now we find \( f(2x) - f(x) \): \[ f(2x) - f(x) = a \left( a^2 + 2(a + 1)x + 4x^2 \right) - a \left( a^2 + (a + 1)x + x^2 \right) \] ### Step 7: Simplify the expression Factoring out \( a \): \[ = a \left( \left( a^2 + 2(a + 1)x + 4x^2 \right) - \left( a^2 + (a + 1)x + x^2 \right) \right) \] This simplifies to: \[ = a \left( (2(a + 1)x - (a + 1)x) + (4x^2 - x^2) \right) \] \[ = a \left( (a + 1)x + 3x^2 \right) \] ### Final Result Thus, we conclude that: \[ f(2x) - f(x) = a \left( (a + 1)x + 3x^2 \right) \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|(a,-1,0),(ax,a,-1),(ax^2,ax,a)|, then f(2x)-f(x) equals

If f(x)=|(a,-1,0), (ax,1,-1), (ax^2,ax,9)|, then f(2x)-f(x) equals

If f(x)=det[[a,-1,0ax,a,-1ax^(2),ax,a]], then f(2x)-f(x) is divisible by (a) a(b)b(c)c,d,e(d) none of these

If f(x)=(x-1)/(x+1) then f(ax) in term of f(x) is equal to

If f(x)=(x-1)/(x+1) , then f(ax) in terms of f(x) is equal to

If f(x)=(x-1)/(x+1), then f(f(ax)) in terms of f(x) is equal to (a) (f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1))(c)(f(x)-1)/(a(f(x)+1))(d)(f(x)+1)/(a(f(x)+1))

If f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x, a]|, using properties of determinants, find the value of f(2x)-f(x)dot

If f(x) = be^(ax) + ae^(bx) , then f''(0) is equal to

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If f(x) = |(a,-1,0),(ax,a,-1),(ax^2,ax,a)| then f (2x) - f (x) is equ...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |