Home
Class 12
MATHS
If |(x+1,x+2,x+a),(x+2,x+3,x+b),(x+3,x+4...

If `|(x+1,x+2,x+a),(x+2,x+3,x+b),(x+3,x+4,x+c)|` = 0 then a,b,c are in

A

A.P.

B

G.P.

C

H.P.

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant of the given matrix and set it equal to zero. The matrix is: \[ \begin{vmatrix} x + 1 & x + 2 & x + a \\ x + 2 & x + 3 & x + b \\ x + 3 & x + 4 & x + c \end{vmatrix} \] ### Step 1: Write down the determinant The determinant of a 3x3 matrix can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix, we can denote: - \( a = x + 1 \) - \( b = x + 2 \) - \( c = x + a \) - \( d = x + 2 \) - \( e = x + 3 \) - \( f = x + b \) - \( g = x + 3 \) - \( h = x + 4 \) - \( i = x + c \) ### Step 2: Simplify the determinant To simplify the calculation, we can perform row operations. Let's perform the operation \( R_2 \leftarrow 2R_2 - R_1 - R_3 \): \[ R_2 = 2(x + 2, x + 3, x + b) - (x + 1, x + 2, x + a) - (x + 3, x + 4, x + c) \] This results in: \[ R_2 = (2x + 4 - (x + 1) - (x + 3), 2x + 6 - (x + 2) - (x + 4), 2b - a - c) \] Calculating each term: 1. First term: \( 2x + 4 - x - 1 - x - 3 = 0 \) 2. Second term: \( 2x + 6 - x - 2 - x - 4 = 0 \) 3. Third term remains \( 2b - a - c \) Thus, we have: \[ \begin{vmatrix} x + 1 & x + 2 & x + a \\ 0 & 0 & 2b - a - c \\ x + 3 & x + 4 & x + c \end{vmatrix} \] ### Step 3: Expand the determinant Now, we can expand the determinant along the second row: \[ \text{det}(A) = 0 \cdot \text{det} + 0 \cdot \text{det} + (2b - a - c) \cdot \text{det} \] The determinant simplifies to: \[ (2b - a - c) \cdot \begin{vmatrix} x + 1 & x + a \\ x + 3 & x + c \end{vmatrix} \] ### Step 4: Set the determinant to zero Since we know that the determinant equals zero, we have: \[ 2b - a - c = 0 \] This implies: \[ 2b = a + c \] ### Step 5: Analyze the relationship The equation \( 2b = a + c \) indicates that \( a, b, c \) are in Arithmetic Progression (AP). ### Final Conclusion Thus, the values \( a, b, c \) are in **Arithmetic Progression (AP)**. ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

The equation |(x-a,x-b,x-c),(x-b,x-a,x-c),(x-c,x-b,x-a)|=0 (a,b,c are different) is satisfied by (A) x=(a+b+c0 (B) x= 1/3 (a+b+c) (C) x=0 (D) none of these

Show that |x+1x+2x+a x+2x+3x+b x+3x+4x+c|=0 where a ,\ b ,\ c are in A.P.

If a-2b+c=1 , then the value of |{:(x+1,x+2,x+a),(x+2,x+3,x+b),(x+3,x+4,x+c):}| is

Choose the correct answer in questions 17 to 19: If a, b, c are in A.P., then the determinant [{:(x+2,x+3,x+2a),(x+3,x+4,x+3b),(x+4,x+5,x+2c):}] is : (a) 0 (b) 1 ( c) x (d) 2x

If a+b+c=0and|(a-x,c,b),(c,b-x,a),(b,a,c-x)|=0 , then show that either x=0 or x=pmsqrt((3)/(2)(a^(2)+b^(2)+c^(2)))

The value of the determinant |(x, x+a, x+2a),(x,x+2a, x+4a),(x, x+3a, x+6a)| is (A) 0 (B) a^3-x^3 (C) x^3-a^3 (D) (x-a)^3

FInd x when det[[x+a,a^(2),a^(3)x+b,b^(2),b^(3)x+c,c^(2),c^(3)]]=0 where a,b,c are distinct numbers and a!=b!=c

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If |(x+1,x+2,x+a),(x+2,x+3,x+b),(x+3,x+4,x+c)| = 0 then a,b,c are in

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |