Home
Class 12
MATHS
If A1B1C1,A2B2C2 and A3B3C3 are three ...

If `A_1B_1C_1,A_2B_2C_2` and `A_3B_3C_3` are three three-digit numbers each of which is divisible by `lamda` then `Delta = |(A_1,B_1,C_1),(A_2,B_2,C_2),(A_3,B_3,C_3)|` is divisible by

A

`lamda`

B

`lamda^2`

C

`2lamda`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that the determinant \( \Delta = |(A_1, B_1, C_1), (A_2, B_2, C_2), (A_3, B_3, C_3)| \) is divisible by \( \lambda \) given that each of the three-digit numbers \( A_1B_1C_1, A_2B_2C_2, A_3B_3C_3 \) is divisible by \( \lambda \). ### Step-by-Step Solution: 1. **Express the three-digit numbers in terms of \( \lambda \)**: Each three-digit number can be expressed as: \[ A_1B_1C_1 = 100A_1 + 10B_1 + C_1 = m_1 \lambda \] \[ A_2B_2C_2 = 100A_2 + 10B_2 + C_2 = m_2 \lambda \] \[ A_3B_3C_3 = 100A_3 + 10B_3 + C_3 = m_3 \lambda \] where \( m_1, m_2, m_3 \) are integers. **Hint**: Recognize that each three-digit number can be represented as a linear combination of its digits multiplied by powers of 10. 2. **Set up the determinant**: The determinant \( \Delta \) can be written as: \[ \Delta = \begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix} \] 3. **Substitute the expressions for \( C_1, C_2, C_3 \)**: We can express the last column in terms of \( C_1, C_2, C_3 \): \[ C_1 = m_1 \lambda - 100A_1 - 10B_1 \] \[ C_2 = m_2 \lambda - 100A_2 - 10B_2 \] \[ C_3 = m_3 \lambda - 100A_3 - 10B_3 \] 4. **Factor out \( \lambda \)**: The determinant can be expressed as: \[ \Delta = \begin{vmatrix} A_1 & B_1 & m_1 \lambda - 100A_1 - 10B_1 \\ A_2 & B_2 & m_2 \lambda - 100A_2 - 10B_2 \\ A_3 & B_3 & m_3 \lambda - 100A_3 - 10B_3 \end{vmatrix} \] By using properties of determinants, we can factor out \( \lambda \): \[ \Delta = \lambda \begin{vmatrix} A_1 & B_1 & 1 \\ A_2 & B_2 & 1 \\ A_3 & B_3 & 1 \end{vmatrix} \] 5. **Conclusion**: Since \( \Delta \) contains \( \lambda \) as a factor, it follows that \( \Delta \) is divisible by \( \lambda \). Therefore, the final answer is that \( \Delta \) is divisible by \( \lambda \). ### Final Answer: \[ \Delta \text{ is divisible by } \lambda. \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If A_(1)B_(1)C_(1),A_(2)B_(2)C_(2) and A_(3)B_(3)C_(3) are three digit numbers,each of which is divisible by k, then Delta=det[[A_(1),B_(1),C_(1)A_(2),C_(2)A_(3),B_(3),C_(3)]] is

if a_(1)b_(1)c_(1), a_(2)b_(2)c_(2)" and " a_(3)b_(3)c_(3) are three-digit even natural numbers and Delta = |{:(c_(1),,a_(1),,b_(1)),(c_(2),,a_(2),,b_(2)),(c_(3),,a_(3),,b_(3)):}|" then " Delta is

If a_(1),b_(1),c_(1),a_(2),b_(2),c_(2) "and" a_(3),b_(3),c_(3) are three digit even natural numbers and Delta=|{:(c_(1),a_(1),b_(1)),(c_(2),a_(2),b_(2)),(c_(3),a_(3),b_(3)):}| , then Delta is

If Delta=|[a_1,b_1,c_1],[a_2,b_2,c_2],[a_3,b_3,c_3]| and A_1,B_1,C_1 denote the co-factors of a_1, b_1, c_1 respectively, then the value of the determinant |[A_1,B_1,C_1],[A_2,B_2,C_2],[A_3,B_3,C_3]| is-

if Delta=det[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

If a_1b_1, c_1,a_2b_2c_2a n da_3b_3c_3 are three digit even natural numbers and =|c_1a_1b_1c_2a_2b_2c_3a_3b_3|,t h e ni s divisible by 2 but not necessarily by 4 divisible by 4 but not necessarily by 8 divisible by 8 none of these

The determinant |(b_1+c_1,c_1+a_1,a_1+b_1),(b_2+c_2,c_2+a_2,a_2+b_2),(b_3+c_3,c_3+a_3,a_3+b_3)|=

If Delta=|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|, then the value of Delta_1=|(a_1+2b_1+3c_1,2c_1+3c_1,c_1),(a_2+2b_2+3c_2,2b_2+3c_2,c_2),(a_3+2b_3+ 3c_3,2b_3+3c_3,c_3)| is equal to

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If A1B1C1,A2B2C2 and A3B3C3 are three three-digit numbers each of wh...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |