Home
Class 12
MATHS
The value of Delta=|(1,1,1),(1,omega,ome...

The value of `Delta=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|` is (where `omega=(-1+sqrt3i)/2`)

A

`3sqrt3i`

B

`-3sqrt3i`

C

`-sqrt3i`

D

`sqrt3i`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \( \Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{vmatrix} \), where \( \omega = \frac{-1 + \sqrt{3}i}{2} \), we will follow these steps: ### Step 1: Calculate \( \omega^2 \) First, we need to calculate \( \omega^2 \): \[ \omega = \frac{-1 + \sqrt{3}i}{2} \] Using the formula for squaring a complex number: \[ \omega^2 = \left(\frac{-1 + \sqrt{3}i}{2}\right)^2 = \frac{(-1)^2 + 2(-1)(\sqrt{3}i) + (\sqrt{3}i)^2}{4} = \frac{1 - 2\sqrt{3}i - 3}{4} = \frac{-2 - 2\sqrt{3}i}{4} = \frac{-1 - \sqrt{3}i}{2} \] ### Step 2: Set up the determinant Now we can set up the determinant: \[ \Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{vmatrix} \] ### Step 3: Expand the determinant Using the determinant formula for a 3x3 matrix: \[ \Delta = 1 \cdot \begin{vmatrix} \omega & \omega^2 \\ \omega^2 & \omega \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & \omega^2 \\ 1 & \omega \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & \omega \\ 1 & \omega^2 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} \omega & \omega^2 \\ \omega^2 & \omega \end{vmatrix} = \omega \cdot \omega - \omega^2 \cdot \omega^2 = \omega^2 - \omega^4 \) 2. \( \begin{vmatrix} 1 & \omega^2 \\ 1 & \omega \end{vmatrix} = 1 \cdot \omega - 1 \cdot \omega^2 = \omega - \omega^2 \) 3. \( \begin{vmatrix} 1 & \omega \\ 1 & \omega^2 \end{vmatrix} = 1 \cdot \omega^2 - 1 \cdot \omega = \omega^2 - \omega \) Thus, \[ \Delta = \omega^2 - \omega^4 - (\omega - \omega^2) + (\omega^2 - \omega) \] Simplifying this expression: \[ \Delta = \omega^2 - \omega^4 - \omega + \omega^2 + \omega^2 - \omega = 3\omega^2 - \omega - \omega^4 \] ### Step 4: Substitute \( \omega^4 \) Since \( \omega^3 = 1 \) (as \( \omega \) is a cube root of unity), we have \( \omega^4 = \omega \). Therefore: \[ \Delta = 3\omega^2 - \omega - \omega = 3\omega^2 - 2\omega \] ### Step 5: Substitute \( \omega \) and \( \omega^2 \) Now substituting \( \omega \) and \( \omega^2 \): \[ \Delta = 3\left(\frac{-1 - \sqrt{3}i}{2}\right) - 2\left(\frac{-1 + \sqrt{3}i}{2}\right) \] Calculating this: \[ = \frac{-3 - 3\sqrt{3}i + 2 - 2\sqrt{3}i}{2} = \frac{-1 - 5\sqrt{3}i}{2} \] ### Final Answer Thus, the value of the determinant \( \Delta \) is: \[ \Delta = \frac{-1 - 5\sqrt{3}i}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

The value of det[[1,1,11,omega,omega^(2)1,omega^(2),omega]]

The inverse of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|, where omega=e(2pii)/3, is

find the value of |[1,1,1],[1,omega^(2),omega],[1,omega,omega^(2)]| where omega is a cube root of unity

Let omega = - (1)/(2) + i (sqrt3)/(2) , then the value of the determinant |(1,1,1),(1,-1- omega^(2),omega^(2)),(1,omega^(2),omega^(4))| , is

Let omega=-(1)/(2)+i(sqrt(3))/(2), then value of the determinant [[1,1,11,-1,-omega^(2)omega^(2),omega^(2),omega]] is (a) 3 omega(b)3 omega(omega-1)3 omega^(2)(d)3 omega(1-omega)

The value of (1+omega^(2)+2 omega)^(3n)-(1+omega+2 omega^(2))^(3n) is

Evaluate: | (1, 1, 1), (1, omega^2, omega), (1, omega, omega^2)| (where omega is an imaginary cube root unity).

If omega is cube root of unit, then find the value of determinant |(1,omega^3,omega^2), (omega^3,1,omega), (omega^2,omega,1)|.

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. The value of Delta=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)| is (w...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |