Home
Class 12
MATHS
If omega is a complex cube root of unity...

If `omega` is a complex cube root of unity, then the value of the determinant `|(1,omega,omega+1),(omega+1,1,omega),(omega,omega+1,1)|` is

A

0

B

`omega`

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( D = \begin{vmatrix} 1 & \omega & \omega + 1 \\ \omega + 1 & 1 & \omega \\ \omega & \omega + 1 & 1 \end{vmatrix} \), where \( \omega \) is a complex cube root of unity, we will follow these steps: ### Step 1: Understanding the properties of \( \omega \) The complex cube roots of unity satisfy the equation \( \omega^3 = 1 \) and \( 1 + \omega + \omega^2 = 0 \). This means that \( \omega^2 = -1 - \omega \). ### Step 2: Simplifying the determinant We can simplify the determinant by performing column operations. We will add all three columns together: \[ C_1 \rightarrow C_1 + C_2 + C_3 \] This gives us: \[ D = \begin{vmatrix} 1 + \omega + (\omega + 1) & \omega & \omega + 1 \\ (\omega + 1) + 1 + \omega & 1 & \omega \\ \omega + (\omega + 1) + 1 & \omega + 1 & 1 \end{vmatrix} \] Calculating the first column: - First row: \( 1 + \omega + \omega + 1 = 2\omega + 2 \) - Second row: \( \omega + 1 + 1 + \omega = 2\omega + 2 \) - Third row: \( \omega + \omega + 1 + 1 = 2\omega + 2 \) Thus, the determinant becomes: \[ D = \begin{vmatrix} 2\omega + 2 & \omega & \omega + 1 \\ 2\omega + 2 & 1 & \omega \\ 2\omega + 2 & \omega + 1 & 1 \end{vmatrix} \] ### Step 3: Factoring out common terms Notice that the first column has a common factor of \( 2\omega + 2 \): \[ D = (2\omega + 2) \begin{vmatrix} 1 & \omega & \omega + 1 \\ 1 & 1 & \omega \\ 1 & \omega + 1 & 1 \end{vmatrix} \] ### Step 4: Expanding the determinant Now we need to compute the determinant: \[ D' = \begin{vmatrix} 1 & \omega & \omega + 1 \\ 1 & 1 & \omega \\ 1 & \omega + 1 & 1 \end{vmatrix} \] Using the first row to expand the determinant: \[ D' = 1 \cdot \begin{vmatrix} 1 & \omega \\ \omega + 1 & 1 \end{vmatrix} - \omega \cdot \begin{vmatrix} 1 & \omega \\ 1 & 1 \end{vmatrix} + (\omega + 1) \cdot \begin{vmatrix} 1 & 1 \\ 1 & \omega \end{vmatrix} \] Calculating these 2x2 determinants: 1. \( \begin{vmatrix} 1 & \omega \\ \omega + 1 & 1 \end{vmatrix} = 1 - \omega(\omega + 1) = 1 - (\omega^2 + \omega) = 1 - (-1) = 2 \) 2. \( \begin{vmatrix} 1 & \omega \\ 1 & 1 \end{vmatrix} = 1 - \omega = 1 - \omega \) 3. \( \begin{vmatrix} 1 & 1 \\ 1 & \omega \end{vmatrix} = \omega - 1 \) Putting this back into \( D' \): \[ D' = 2 - \omega(1 - \omega) + (\omega + 1)(\omega - 1) \] ### Step 5: Simplifying \( D' \) Now we simplify: \[ D' = 2 - \omega + \omega^2 + \omega - 1 = 1 + \omega^2 \] Using \( \omega^2 = -1 - \omega \): \[ D' = 1 - 1 - \omega = -\omega \] ### Step 6: Final value of the determinant Thus, we have: \[ D = (2\omega + 2)(-\omega) = -2\omega^2 - 2\omega \] Substituting \( \omega^2 = -1 - \omega \): \[ D = -2(-1 - \omega) - 2\omega = 2 + 2\omega - 2\omega = 2 \] ### Conclusion The value of the determinant is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If omega is cube root of unit, then find the value of determinant |(1,omega^3,omega^2), (omega^3,1,omega), (omega^2,omega,1)|.

If omegais an imaginary cube root of unity, then the value of the determinant |(1+omega,omega^2,-omega),(1+omega^2,omega,-omega^2),(omega+omega^2,omega,-omega^2)|

If omega is a complex cube root of unity then the matrix A = [(1, omega^(2),omega),(omega^(2),omega,1),(omega,1,omega^(2))] is a

If omega is an imaginary cube root of unity, then the value of |(1,omega^(2),1-omega^(4)),(omega,1,1+omega^(5)),(1,omega,omega^(2))| is

If omega be a complex cube root of unity then the value of (1)/(1+2 omega)-(1)/(1+omega)+(1)/(2+omega) is

If omega is a complex cube root of unity, then a root of the equation |(x +1,omega,omega^(2)),(omega,x + omega^(2),1),(omega^(2),1,x + omega)| = 0 , is

If omega is a complex cube root of unity then the value of (1+omega)(1+omega^(2))(1+omega^(4)).......2n terms-

If omega is a cube root of unity,then find the value of the following: (1+omega-omega^(2))(1-omega+omega^(2))

If omega is a complex cube root of unity then the value of determinant |[2,2 omega,-omega^(2)],[1,1,1],[1,-1,0]|= a) 0 b) 1 c) -1 d) 2

If omega is a complex cube root of unity, then what is the value of 1-(1)/((1+omega))-(1)/((1+omega^(2))) ?

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If omega is a complex cube root of unity, then the value of the determ...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |