Home
Class 12
MATHS
If 0le [x] lt 2, -1 le [y] lt 1 and 1le ...

If `0le [x] lt 2, -1 le [y] lt 1 and 1le [z] lt3` where [.] denotes the greatest integer functions then the maximum value of `Delta` where `Delta=|([x]+1,[y],[z]),([x],[y]+1,[z]),([x],[y],[z]+1)|` is

A

2

B

4

C

6

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of the determinant \( \Delta \) given the constraints on \( x \), \( y \), and \( z \) defined by their greatest integer functions. ### Step-by-Step Solution: 1. **Identify the ranges of the greatest integer functions**: - For \( [x] \): \( 0 \leq [x] < 2 \) implies \( [x] \) can be \( 0 \) or \( 1 \). - For \( [y] \): \( -1 \leq [y] < 1 \) implies \( [y] \) can be \( -1 \) or \( 0 \). - For \( [z] \): \( 1 \leq [z] < 3 \) implies \( [z] \) can be \( 1 \) or \( 2 \). 2. **Set up the determinant**: \[ \Delta = \left| \begin{array}{ccc} [x] + 1 & [y] & [z] \\ [x] & [y] + 1 & [z] \\ [x] & [y] & [z] + 1 \end{array} \right| \] 3. **Substituting possible values**: - We will evaluate \( \Delta \) for all combinations of \( [x] \), \( [y] \), and \( [z] \). 4. **Calculate the determinant**: Let's calculate \( \Delta \) for the combinations: - **Case 1**: \( [x] = 0, [y] = -1, [z] = 1 \) \[ \Delta = \left| \begin{array}{ccc} 1 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & -1 & 2 \end{array} \right| \] Expanding this determinant gives: \[ \Delta = 1 \cdot \left| \begin{array}{cc} 0 & 1 \\ -1 & 2 \end{array} \right| = 1 \cdot (0 \cdot 2 - 1 \cdot -1) = 1 \] - **Case 2**: \( [x] = 0, [y] = 0, [z] = 1 \) \[ \Delta = \left| \begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{array} \right| \] Expanding gives: \[ \Delta = 1 \cdot \left| \begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array} \right| = 1 \cdot (1 \cdot 2 - 1 \cdot 0) = 2 \] - **Case 3**: \( [x] = 1, [y] = -1, [z] = 1 \) \[ \Delta = \left| \begin{array}{ccc} 2 & -1 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & 2 \end{array} \right| \] Expanding gives: \[ \Delta = 2 \cdot \left| \begin{array}{cc} 0 & 1 \\ -1 & 2 \end{array} \right| - (-1) \cdot \left| \begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array} \right| \] This results in: \[ = 2(0 \cdot 2 - 1 \cdot -1) + (1 \cdot 2 - 1 \cdot 1) = 2 + 1 = 3 \] - **Case 4**: \( [x] = 1, [y] = 0, [z] = 2 \) \[ \Delta = \left| \begin{array}{ccc} 2 & 0 & 2 \\ 1 & 1 & 2 \\ 1 & 0 & 3 \end{array} \right| \] Expanding gives: \[ = 2 \cdot \left| \begin{array}{cc} 1 & 2 \\ 0 & 3 \end{array} \right| - 0 + 2 \cdot \left| \begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right| \] This results in: \[ = 2(1 \cdot 3 - 2 \cdot 0) + 2(1 \cdot 0 - 1 \cdot 1) = 6 - 2 = 4 \] 5. **Find the maximum value**: After evaluating all cases, the maximum value of \( \Delta \) is \( 4 \). ### Final Answer: The maximum value of \( \Delta \) is \( \boxed{4} \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If 0le[x]lt2,-1le[y]lt1and1le[z]lt3 , where [*] denotes the greatest integer function, then the maximum value of the determinant |{:([x]+1,,[y],,[z]),([x],,[y]+1,,[z]),([x],,[y],,[z]+1):}| is -

If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] denotes the greatest integer function, then

Let f(x)=(x^(2)+1)/([x]),1 lt x le 3.9.[.] denotes the greatest integer function. Then

If f(x)= {(|1-4x^2|,; 0 lt= x lt 1), ([x^2-2x],; 1 lt= x lt 2):} , where [.] denotes the greatest integer function, then f(x) is

If f(x) = {{:(|1-4x^(2)|",",0 le x lt 1),([x^(2)-2x]",",1 le x lt 2):} , where [] denotes the greatest integer function, then

The area bounded by y=x^(2),y=[x+1], 0 le x le 2 and the y-axis is where [.] is greatest integer function.

If [] denotes the greatest integer less than or equal to the real number under consideration and -1lt=xlt0,0lt=ylt1,1lt=zlt2, the value of the determinant |{:([x]+1,[y],[z]),([x],[y]+1,[z]),([x],[y],[z]+1):}| is

Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x le 2):} and g(x)={([x]",",-pi le x lt 0),(sinx",",0le x le pi):} where [.] denotes the greatest integer function. The number of integral points in the range of g(f(x)) is

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If 0le [x] lt 2, -1 le [y] lt 1 and 1le [z] lt3 where [.] denotes the ...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |