Home
Class 12
MATHS
The sum of two non - integral roots of ...

The sum of two non - integral roots of
`Delta=|(x,3,4),(5,x,5),(4,2,x)|` = 0 is

A

4

B

`-4`

C

16

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant problem, we need to find the sum of the two non-integral roots of the determinant \( \Delta = \begin{vmatrix} x & 3 & 4 \\ 5 & x & 5 \\ 4 & 2 & x \end{vmatrix} = 0 \). ### Step-by-Step Solution: 1. **Calculate the Determinant**: We will first compute the determinant \( \Delta \): \[ \Delta = \begin{vmatrix} x & 3 & 4 \\ 5 & x & 5 \\ 4 & 2 & x \end{vmatrix} \] 2. **Apply Row Operations**: We can simplify the determinant by performing row operations. We will replace the first column \( C_1 \) with \( C_1 - C_3 \): \[ C_1 \rightarrow C_1 - C_3 \] This gives us: \[ \Delta = \begin{vmatrix} x - 4 & 3 & 4 \\ 1 & x & 5 \\ 0 & 2 & x \end{vmatrix} \] 3. **Expand the Determinant**: Now we can expand the determinant. We will use the first column: \[ \Delta = (x - 4) \begin{vmatrix} x & 5 \\ 2 & x \end{vmatrix} - 3 \begin{vmatrix} 1 & 5 \\ 0 & x \end{vmatrix} + 4 \begin{vmatrix} 1 & x \\ 0 & 2 \end{vmatrix} \] 4. **Calculate the 2x2 Determinants**: - For \( \begin{vmatrix} x & 5 \\ 2 & x \end{vmatrix} = x^2 - 10 \) - For \( \begin{vmatrix} 1 & 5 \\ 0 & x \end{vmatrix} = x \) - For \( \begin{vmatrix} 1 & x \\ 0 & 2 \end{vmatrix} = 2 \) 5. **Substitute Back**: Substitute the values back into the determinant: \[ \Delta = (x - 4)(x^2 - 10) - 3x + 8 \] 6. **Expand and Simplify**: Expanding gives: \[ \Delta = (x^3 - 10x + 4x^2 - 40) - 3x + 8 \] Combine like terms: \[ \Delta = x^3 + 4x^2 - 13x - 32 \] 7. **Set the Determinant to Zero**: We need to find the roots of the equation: \[ x^3 + 4x^2 - 13x - 32 = 0 \] 8. **Find the Roots**: By using the Rational Root Theorem or synthetic division, we can find that \( x = 4 \) is a root. Thus, we can factor the polynomial: \[ (x - 4)(x^2 + 8x + 8) = 0 \] 9. **Find the Non-Integral Roots**: Now we need to find the roots of the quadratic \( x^2 + 8x + 8 = 0 \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-8 \pm \sqrt{64 - 32}}{2} = \frac{-8 \pm \sqrt{32}}{2} = \frac{-8 \pm 4\sqrt{2}}{2} = -4 \pm 2\sqrt{2} \] 10. **Sum of Non-Integral Roots**: The two non-integral roots are \( -4 + 2\sqrt{2} \) and \( -4 - 2\sqrt{2} \). Their sum is: \[ (-4 + 2\sqrt{2}) + (-4 - 2\sqrt{2}) = -8 \] ### Final Answer: The sum of the two non-integral roots is \( -8 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

The sum of two non integral roots of |{:(x,2,5),(3,x,3),(5,4,x):}|=0 is

Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|=0 is

The roots of the equations |{:(1+x,3,5),(2,2+x,5),(2,3,x+4):}| = 0 are

If x=-4 is a root of a Delta=|(x,2,3),(1,x,1),(3,2,x)|=0 , then find the other two roots.

If x=-4 is a root of Delta=|{:(x,2,3),(1,x,1),(3,2,x):}|=0 , then find the other two roots.

The number of positive integral roots of x^(4) + x^(3) - 4 x^(2) + x + 1 = 0 , is

Two non-integer roots of (x^(2) - 5x)^(2) - 7 (x^(2) - 5x) + 6 = 0 are

The non -integral roots of x^(4) - 3x^(3) - 2x^(2) + 3x + 1=0" " (1) are

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. The sum of two non - integral roots of Delta=|(x,3,4),(5,x,5),(4,2,x...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |