Home
Class 12
MATHS
If |(a^2+1,ab,ac),(ab,b^2+1,bc),(ac,bc,c...

If `|(a^2+1,ab,ac),(ab,b^2+1,bc),(ac,bc,c^2+1)|=1` , where a,b,c are real , then

A

`a+b+c = 0 `

B

`a+b+c = 1`

C

`a^2+b^2+c^2=0`

D

`a=b=c=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation given by \[ |(a^2+1, ab, ac), (ab, b^2+1, bc), (ac, bc, c^2+1)| = 1, \] we will follow these steps: ### Step 1: Multiply Rows by Variables Multiply the first row by \(a\), the second row by \(b\), and the third row by \(c\): \[ | (a(a^2+1), a(ab), a(ac)), (b(ab), b(b^2+1), b(bc)), (c(ac), c(bc), c(c^2+1)) |. \] This results in: \[ | (a^3 + a, a^2b, a^2c), (ab^2, b^3 + b, b^2c), (ac^2, bc^2, c^3 + c) |. \] ### Step 2: Apply Row Operations Now, we will perform the row operation \(R_1 \rightarrow R_1 + R_2 + R_3\): The first row becomes: \[ R_1 = (a^3 + a + ab^2 + b^3 + b + ac^2 + bc^2 + c^3 + c). \] ### Step 3: Factor Out Common Terms We can factor out \(1 + a^2 + b^2 + c^2\) from the first row: \[ |(1 + a^2 + b^2 + c^2, a^2b, a^2c), (ab^2, b^3 + b, b^2c), (ac^2, bc^2, c^3 + c)|. \] ### Step 4: Factor Out Columns Next, we can factor out \(a\), \(b\), and \(c\) from the respective columns: \[ = abc |(1 + a^2 + b^2 + c^2, b, c), (b, b^2 + 1, c), (c, b, c^2 + 1)|. \] ### Step 5: Evaluate the Determinant Now, we need to evaluate the determinant: \[ |(1 + a^2 + b^2 + c^2, b, c), (b, b^2 + 1, c), (c, b, c^2 + 1)|. \] ### Step 6: Set the Determinant Equal to 1 We know that the determinant equals 1: \[ abc(1 + a^2 + b^2 + c^2) = 1. \] ### Step 7: Solve for \(a^2 + b^2 + c^2\) From the equation above, we can isolate \(1 + a^2 + b^2 + c^2\): \[ 1 + a^2 + b^2 + c^2 = \frac{1}{abc}. \] ### Step 8: Analyze the Result For \(a^2 + b^2 + c^2\) to equal zero, it must be that \(a = b = c = 0\) since squares of real numbers are non-negative. Thus, we conclude: \[ a^2 + b^2 + c^2 = 0 \implies a = 0, b = 0, c = 0. \] ### Final Answer The correct options are: 1. \(A^2 + B^2 + C^2 = 0\) (True) 2. \(A = B = C = 0\) (True)
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

if a,b,c are real then find the intervial in which f(x)=|{:(x+a^2,ab,ac),(ab,x+b^2,bc),(ac,bc,x+c^2):}| is decreasing.

Prove that: |(a^2+1, ab, ac),(ab, b^2+1, bc),(ac, bc, c^2+1)|=1+a^2+b^2+c^2

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

If a, b, c are real numbers, then find the intervals in which : f(x)=|(x+a^(2),ab,ac),(ab,x+b^(2),bc),(ac,bc,x+c^(2))| is strictly increasing or decreasing.

Prove that |{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1):}|=1+a^(2)+b^(2)+c^(2) .

If A=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))] "and B"= [(0,c,-b),(-c,0,a),(b,-a,0)] then the product AB is equal to

If A=[{:(0," "c,-b),(-c," "0," "a),(b,-a," "0):}]" and "B=[{:(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2)):}] , show that AB is a zero matrix.

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If |(a^2+1,ab,ac),(ab,b^2+1,bc),(ac,bc,c^2+1)|=1 , where a,b,c are re...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |