Home
Class 12
MATHS
The determinant Delta=|(a^2+x,ab,ac),(...

The determinant
`Delta=|(a^2+x,ab,ac),(ab,b^2+x,bc),(ac,bc,c^2+x)|` is divisible by

A

x

B

`x^2`

C

`a^2+b^2+c^2+x`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the divisibility of the determinant \[ \Delta = \begin{vmatrix} a^2 + x & ab & ac \\ ab & b^2 + x & bc \\ ac & bc & c^2 + x \end{vmatrix} \] we will expand this determinant and analyze the resulting expression. ### Step 1: Expand the Determinant We will expand the determinant along the first row. The formula for the determinant of a 3x3 matrix is given by: \[ \Delta = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \] Applying this to our determinant: \[ \Delta = (a^2 + x) \begin{vmatrix} b^2 + x & bc \\ bc & c^2 + x \end{vmatrix} - ab \begin{vmatrix} ab & bc \\ ac & c^2 + x \end{vmatrix} + ac \begin{vmatrix} ab & b^2 + x \\ ac & bc \end{vmatrix} \] ### Step 2: Calculate the 2x2 Determinants Now we calculate the 2x2 determinants: 1. For the first term: \[ \begin{vmatrix} b^2 + x & bc \\ bc & c^2 + x \end{vmatrix} = (b^2 + x)(c^2 + x) - (bc)(bc) = b^2c^2 + xb^2 + xc^2 + x^2 - b^2c^2 = xb^2 + xc^2 + x^2 \] 2. For the second term: \[ \begin{vmatrix} ab & bc \\ ac & c^2 + x \end{vmatrix} = ab(c^2 + x) - bc(ac) = abc^2 + abx - abc^2 = abx \] 3. For the third term: \[ \begin{vmatrix} ab & b^2 + x \\ ac & bc \end{vmatrix} = ab(bc) - ac(b^2 + x) = ab^2c - acb^2 - acx = ab^2c - acb^2 - acx \] ### Step 3: Substitute Back into the Determinant Now substituting these back into the determinant expression: \[ \Delta = (a^2 + x)(xb^2 + xc^2 + x^2) - ab(abx) + ac(ab^2c - acb^2 - acx) \] ### Step 4: Simplify the Expression Now we simplify the expression: \[ \Delta = (a^2 + x)(xb^2 + xc^2 + x^2) - a^2b^2x + ac(ab^2c - acb^2 - acx) \] Expanding the first term: \[ = a^2xb^2 + a^2xc^2 + a^2x^2 + x^2b^2 + x^2c^2 + x^3 - a^2b^2x + ac(ab^2c - acb^2 - acx) \] ### Step 5: Factor Out Common Terms Now we can factor out common terms: \[ = x(a^2b^2 + a^2c^2 + a^2x + b^2x + c^2x + x^2 - a^2b^2 + ac(ab^2c - acb^2 - acx)) \] ### Step 6: Analyze Divisibility From the expression, we can see that \(x\) is a common factor. Therefore, the determinant \(\Delta\) is divisible by \(x\). Also, we can check for \(x^2\) and \(a^2 + b^2 + c^2 + x\) to see if they are also factors. ### Conclusion Thus, the determinant \(\Delta\) is divisible by \(x\), \(x^2\), and \(a^2 + b^2 + c^2 + x\).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

The determinant Delta =|(a^2(1+x),ab,ac),(ab,b^2(1+x),bc), (ac,bc,c^2(1+x))| is divisible by 1)1+x 2)(1+x)^2 3)x^2 4) x^2+1

Without expanding the determinant, show that the determinant |{:(a^(2)+10,ab,ac),(ab,b^(2)+10,bc),(ac,bc,c^(2)+10):}| is divisible by 100

The determinant Delta = |(a^(2) + x^(2),ab,ac),(ab,b^(2) + x^(2),bc),(ac,bc,c^(2) + x^(2))| is divisible

The determinant Delta=|{:(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2)):}| is divisible by

The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by

if a,b,c are real then find the intervial in which f(x)=|{:(x+a^2,ab,ac),(ab,x+b^2,bc),(ac,bc,x+c^2):}| is decreasing.

What is the value of |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| ?

The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2)| equals

If a, b, c are real numbers, then find the intervals in which : f(x)=|(x+a^(2),ab,ac),(ab,x+b^(2),bc),(ac,bc,x+c^(2))| is strictly increasing or decreasing.

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. The determinant Delta=|(a^2+x,ab,ac),(ab,b^2+x,bc),(ac,bc,c^2+x)| is...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |