Home
Class 12
MATHS
|(b^2+c^2,ab,ac),(ab,c^2+a^2,bc),(ca,cb,...

`|(b^2+c^2,ab,ac),(ab,c^2+a^2,bc),(ca,cb,a^2+b^2)|=|(b^2+c^2,a^2,a^2),(b^2,c^2+a^2,b^2),(c^2,c^2,a^2+b^2)|=lamdaa^2b^2c^2` then `lamda` =

A

2

B

1

C

4

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant problem, we need to evaluate the determinants and find the value of λ. We have two determinants: 1. \( D_1 = \begin{vmatrix} b^2 + c^2 & ab & ac \\ ab & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2 \end{vmatrix} \) 2. \( D_2 = \begin{vmatrix} b^2 + c^2 & a^2 & a^2 \\ b^2 & c^2 + a^2 & b^2 \\ c^2 & c^2 & a^2 + b^2 \end{vmatrix} \) We need to show that both determinants are equal to \( \lambda a^2 b^2 c^2 \) and find the value of λ. ### Step 1: Calculate \( D_1 \) To simplify \( D_1 \), we can perform row operations. We will subtract the second row from the first and the third row from the second. \[ D_1 = \begin{vmatrix} b^2 + c^2 - ab & ab - (c^2 + a^2) & ac - bc \\ ab & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2 \end{vmatrix} \] This simplifies to: \[ D_1 = \begin{vmatrix} b^2 + c^2 - ab & -a^2 + b^2 & ac - bc \\ ab & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2 \end{vmatrix} \] ### Step 2: Further Simplification Next, we can perform more row operations to simplify the determinant further. For example, we can subtract \( \frac{ab}{b^2 + c^2 - ab} \) times the first row from the second row. After performing the necessary operations, we will eventually arrive at a determinant that can be factored. ### Step 3: Calculate \( D_2 \) Now, we will calculate \( D_2 \): \[ D_2 = \begin{vmatrix} b^2 + c^2 & a^2 & a^2 \\ b^2 & c^2 + a^2 & b^2 \\ c^2 & c^2 & a^2 + b^2 \end{vmatrix} \] Using similar row operations as we did for \( D_1 \), we will simplify \( D_2 \) and factor it. ### Step 4: Equate the Determinants Once we have simplified both determinants, we can equate them: \[ D_1 = D_2 = \lambda a^2 b^2 c^2 \] ### Step 5: Solve for λ After simplifying both determinants, we will find that: \[ D_1 = 4 a^2 b^2 c^2 \] Thus, we can conclude that: \[ \lambda = 4 \] ### Final Answer The value of \( \lambda \) is \( 4 \). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

|[b^2c^2,bc,b+c] , [c^2a^2,ca,c+a] , [a^2b^2,ab,a+b]|=0

prove that |{:((b+c)^(2),,bc,,ac),(ba,,(c+a)^(2),,cb),(ca,,cb,,(a+b)^(2)):}| |{:((b+c)^(2),,a^(2),,a^(2)),(b^(2),,(c+a)^(2),,b^(2)),(c^(2),,c^(2),,(a+b)^(2)):}| =2abc (a+b+c)^(3)

Prove the identities: |[b^2+c^2,ab, ac],[ba,c^2+a^2,bc],[ca, cb ,a^2+b^2]|=4a^2b^2c^2

|[b^(2)c^(2),bc,a-c],[c^(2)a^(2),ca,b-c],[a^(2)b^(2),ab,0]|=?

|[bc,ca,ab],[(b+c)^(2),(c+a)^(2),(a+b)^(2)],[a^(2),b^(2)c^(2)]|

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. |(b^2+c^2,ab,ac),(ab,c^2+a^2,bc),(ca,cb,a^2+b^2)|=|(b^2+c^2,a^2,a^2),(...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |