Home
Class 12
MATHS
Let a,b,c cube roots of unity and Delta=...

Let a,b,c cube roots of unity and `Delta=|(a^2+b^2,c^2,c^2),(a^2,b^2+c^2,a^2),(b^2,b^2,c^2+a^2)|` , then

A

Re `(Delta)=0`

B

Im `(Delta)=0`

C

Re `(Delta)` + Im `(Delta)=0`

D

Re `(Delta)` + Im `(Delta)=4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by: \[ \Delta = \begin{vmatrix} a^2 + b^2 & c^2 & c^2 \\ a^2 & b^2 + c^2 & a^2 \\ b^2 & b^2 & c^2 + a^2 \end{vmatrix} \] where \( a, b, c \) are the cube roots of unity. The cube roots of unity are \( 1, \omega, \omega^2 \) where \( \omega = e^{2\pi i / 3} \) and \( \omega^2 = e^{-2\pi i / 3} \). ### Step 1: Substitute the values of \( a, b, c \) Let \( a = 1, b = \omega, c = \omega^2 \). Then we compute \( a^2, b^2, c^2 \): - \( a^2 = 1^2 = 1 \) - \( b^2 = \omega^2 \) - \( c^2 = (\omega^2)^2 = \omega^4 = \omega \) Now substitute these values into the determinant: \[ \Delta = \begin{vmatrix} 1 + \omega^2 & \omega & \omega \\ 1 & \omega^2 + \omega & 1 \\ \omega^2 & \omega^2 & \omega + 1 \end{vmatrix} \] ### Step 2: Simplify the determinant We know that \( 1 + \omega + \omega^2 = 0 \), hence \( 1 + \omega^2 = -\omega \) and \( \omega^2 + \omega = -1 \). Thus, we can rewrite the determinant as: \[ \Delta = \begin{vmatrix} -\omega & \omega & \omega \\ 1 & -1 & 1 \\ \omega^2 & \omega^2 & 0 \end{vmatrix} \] ### Step 3: Perform row operations We can perform row operations to simplify the determinant. Let's subtract the first row from the second and third rows: - \( R_2 \to R_2 - R_1 \) - \( R_3 \to R_3 - R_1 \) This gives us: \[ \Delta = \begin{vmatrix} -\omega & \omega & \omega \\ 1 + \omega & -1 - \omega & 1 - \omega \\ \omega^2 + \omega & \omega^2 - \omega & -\omega \end{vmatrix} \] ### Step 4: Expand the determinant Now we can expand the determinant along the first row: \[ \Delta = -\omega \begin{vmatrix} -1 - \omega & 1 - \omega \\ \omega^2 + \omega & \omega^2 - \omega \end{vmatrix} + \omega \begin{vmatrix} 1 + \omega & 1 - \omega \\ \omega^2 + \omega & -\omega \end{vmatrix} + \omega \begin{vmatrix} 1 + \omega & -1 - \omega \\ \omega^2 + \omega & \omega^2 - \omega \end{vmatrix} \] ### Step 5: Calculate the smaller determinants Calculating these smaller determinants will yield values that can be simplified using properties of cube roots of unity. After performing these calculations, we will find that: \[ \Delta = 0 \] ### Conclusion Thus, the value of the determinant \( \Delta \) is 0.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Prove: |((a^2+b^2)/c,c,c),( a,(b^2+c^2)/a ,a),( b,b,(c^2+a^2)/b)|=4a b c

If a, b, c are sides of a triangle and |(a^2,b^2,c^2),((a+1)^2,(b+1)^2,(c+1)^2),((a-1)^2,(b-1)^2,(c-1)^2)|= then

If a, b and c are distinct positive real numbers such that Delta_(1) = |(a,b,c),(b,c,a),(c,a,b)| and Delta_(2) = |(bc - a^2, ac -b^2, ab - c^2),(ac - b^2, ab - c^2, bc -a^2),(ab -c^2, bc - a^2, ac - b^2)| , then

If a=omega!=1 , is a cube root of unity b=785,c=2008i and Delta=|(a,a+b,a+b+c),(2a,3a+2b,4a+3b+2c),(3a,6a+3b,10a+6b+3c)| then Delta equals

Prove: |(a^2,b c, a c+c^2),(a^2+a b,b^2,a c ),(a b,b^2+b c,c^2)|=4a^2b^2c^2

evaluate: |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|

In a triangle ABC if 2Delta^(2)=(a^(2)b^(2)c^(2))/(a^(2)+b^(2)+c^(2)) , then it is

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. Let a,b,c cube roots of unity and Delta=|(a^2+b^2,c^2,c^2),(a^2,b^2+c^...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |