Home
Class 12
MATHS
If |(x,1,5),(1,5,x),(5,x,1)|=|(x,2,4),(2...

If `|(x,1,5),(1,5,x),(5,x,1)|=|(x,2,4),(2,4,x),(4,x,2)|=|(x,-1,7),(-1,7,x),(7,x,-1)|` = 0 , then x =

A

6

B

`-6`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the determinants given are equal to zero. We can start with the first determinant: \[ D_1 = \begin{vmatrix} x & 1 & 5 \\ 1 & 5 & x \\ 5 & x & 1 \end{vmatrix} \] ### Step 1: Calculate the determinant \( D_1 \) We can use the determinant formula for a \( 3 \times 3 \) matrix: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our determinant, we have: \[ D_1 = x \begin{vmatrix} 5 & x \\ x & 1 \end{vmatrix} - 1 \begin{vmatrix} 1 & x \\ 5 & 1 \end{vmatrix} + 5 \begin{vmatrix} 1 & 5 \\ 5 & x \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} 5 & x \\ x & 1 \end{vmatrix} = 5 \cdot 1 - x \cdot x = 5 - x^2 \) 2. \( \begin{vmatrix} 1 & x \\ 5 & 1 \end{vmatrix} = 1 \cdot 1 - x \cdot 5 = 1 - 5x \) 3. \( \begin{vmatrix} 1 & 5 \\ 5 & x \end{vmatrix} = 1 \cdot x - 5 \cdot 5 = x - 25 \) Substituting these back into the determinant: \[ D_1 = x(5 - x^2) - 1(1 - 5x) + 5(x - 25) \] Expanding this: \[ D_1 = 5x - x^3 - 1 + 5x + 5x - 125 \] \[ D_1 = -x^3 + 15x - 126 \] ### Step 2: Set \( D_1 = 0 \) Now we set the determinant equal to zero: \[ -x^3 + 15x - 126 = 0 \] ### Step 3: Rearranging the equation Multiplying through by -1 gives: \[ x^3 - 15x + 126 = 0 \] ### Step 4: Finding roots To find the roots of the polynomial, we can use the Rational Root Theorem or synthetic division. Testing \( x = 6 \): \[ 6^3 - 15 \cdot 6 + 126 = 216 - 90 + 126 = 252 \quad (\text{not a root}) \] Testing \( x = -6 \): \[ (-6)^3 - 15(-6) + 126 = -216 + 90 + 126 = 0 \quad (\text{is a root}) \] ### Step 5: Factor the polynomial Since \( x = -6 \) is a root, we can factor the polynomial as: \[ (x + 6)(x^2 - 6x + 21) = 0 \] ### Step 6: Solve the quadratic equation Now we solve the quadratic \( x^2 - 6x + 21 = 0 \) using the discriminant: \[ D = b^2 - 4ac = (-6)^2 - 4 \cdot 1 \cdot 21 = 36 - 84 = -48 \] Since the discriminant is negative, this quadratic has no real roots. ### Conclusion Thus, the only real solution is: \[ \boxed{-6} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If Delta_(1) = |(7,x,2),(-5,x +1,3),(4,x,7)| and Delta_(2) = |(x,2,7),(x +1,3,-5),(x,7,4)| , then the value of x for which Delta_(1) + Delta_(2) = 0 , is

5(4x+5)=5(x+2(1)/(2))-(1)/(2)(7x+12)

2(x-4)/((x-1)(x-7))>=(1)/(x-2)

(4x+1)/(3)+(2x-1)/(2)=6+(3x-7)/(5)

If Delta_1=|{:(10,4,3),(17,7,4),(4,-5,7):}|,Delta_2=|{:(4,x+5,3),(7,x+12,4),(-5,x-1,7):}| such that Delta_1+Delta_2=0, then

((5x+3)-(4x-2))/((5x+3)+(x-1))=(7)/(4)

((2)/(3)x+4)((3)/(2)x+6)-((1)/(7)x-1)((1)/(7)x+1)

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If |(x,1,5),(1,5,x),(5,x,1)|=|(x,2,4),(2,4,x),(4,x,2)|=|(x,-1,7),(-1,7...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |