Home
Class 12
MATHS
If t1, t2 ,t3,t4,t5 be in A.P. common di...

If `t_1, t_2 ,t_3,t_4,t_5` be in A.P. common difference `d` then the value of D `=|(t_2_t_3,t_2,t_1),(t_3_t_4,t_3,t_2),(t_4_t_5,t_4,t_3)|` is

A

`0`

B

`2d^2`

C

`2d^3`

D

`2d^4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the determinant \( D = \begin{vmatrix} t_2 - t_3 & t_2 & t_1 \\ t_3 - t_4 & t_3 & t_2 \\ t_4 - t_5 & t_4 & t_3 \end{vmatrix} \) given that \( t_1, t_2, t_3, t_4, t_5 \) are in arithmetic progression (A.P.) with a common difference \( d \). ### Step-by-Step Solution: 1. **Express the terms in terms of \( t_1 \) and \( d \)**: - Let \( t_1 = a \). - Then, \( t_2 = a + d \), - \( t_3 = a + 2d \), - \( t_4 = a + 3d \), - \( t_5 = a + 4d \). 2. **Substitute these values into the determinant**: \[ D = \begin{vmatrix} (a + d) - (a + 2d) & (a + d) & a \\ (a + 2d) - (a + 3d) & (a + 2d) & (a + d) \\ (a + 3d) - (a + 4d) & (a + 3d) & (a + 2d) \end{vmatrix} \] 3. **Simplify the determinant**: - The first row becomes: \[ (a + d) - (a + 2d) = -d, \quad (a + d), \quad a \] - The second row becomes: \[ (a + 2d) - (a + 3d) = -d, \quad (a + 2d), \quad (a + d) \] - The third row becomes: \[ (a + 3d) - (a + 4d) = -d, \quad (a + 3d), \quad (a + 2d) \] - Thus, the determinant \( D \) can be rewritten as: \[ D = \begin{vmatrix} -d & (a + d) & a \\ -d & (a + 2d) & (a + d) \\ -d & (a + 3d) & (a + 2d) \end{vmatrix} \] 4. **Factor out \(-d\) from each row**: \[ D = -d \begin{vmatrix} 1 & \frac{(a + d)}{-d} & \frac{a}{-d} \\ 1 & \frac{(a + 2d)}{-d} & \frac{(a + d)}{-d} \\ 1 & \frac{(a + 3d)}{-d} & \frac{(a + 2d)}{-d} \end{vmatrix} \] - This simplifies to: \[ D = -d \cdot (-d) \begin{vmatrix} 1 & -\frac{(a + d)}{d} & -\frac{a}{d} \\ 1 & -\frac{(a + 2d)}{d} & -\frac{(a + d)}{d} \\ 1 & -\frac{(a + 3d)}{d} & -\frac{(a + 2d)}{d} \end{vmatrix} \] 5. **Evaluate the determinant**: - Notice that the first column is identical in all rows, which implies that the determinant is zero: \[ D = 0 \] ### Final Answer: Thus, the value of the determinant \( D \) is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

The vertices of a triangle are [a t_1t_2,a(t_1 +t_2)], [a t_2t_3,a(t_2 +t_3)], [a t_3t_1,a(t_3 +t_1)] Then the orthocenter of the triangle is (a) (-a, a(t_1+t_2+t_3)-at_1t_2t_3) (b) (-a, a(t_1+t_2+t_3)+at_1t_2t_3) (c) (a, a(t_1+t_2+t_3)+at_1t_2t_3) (d) (a, a(t_1+t_2+t_3)-at_1t_2t_3)

The common difference d of the A.P. in which T_(7) = 9 and T_(1)T_(2)T_(7) is least is

If a series T_(1)+T_(2)+T_(3)+...+T_(n) is in AP with common, difference d, then the terms T_(1),T_(4),T_(7),... are in AP with, common difference.

If the orthocentre of the triangle formed by the points t_1,t_2,t_3 on the parabola y^2=4ax is the focus, the value of |t_1t_2+t_2t_3+t_3t_1| is

If t_0,t_1, t_2,...,t_n are the terms in the expansion of (x+a)^n then prove that (t_0-t_2+t_4-...)^2+(t_1-t_3+t_5-...)^2=(x^2+a^2)^n .

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If t1, t2 ,t3,t4,t5 be in A.P. common difference d then the value of D...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |