Home
Class 12
MATHS
If |(y+z,z,y),(z,z+x,x),(y,x,x+y)| = k ...

If `|(y+z,z,y),(z,z+x,x),(y,x,x+y)|` = k xyz, then k =

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( |(y+z, z, y), (z, z+x, x), (y, x, x+y)| = kxyz \), we will follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} y+z & z & y \\ z & z+x & x \\ y & x & x+y \end{vmatrix} \] ### Step 2: Simplify the Determinant We can simplify the determinant by performing column operations. Let's add the second and third columns to the first column: \[ C_1 \rightarrow C_1 + C_2 + C_3 \] This gives us: \[ D = \begin{vmatrix} (y+z) + z + y & z & y \\ z + (z+x) + x & z+x & x \\ y + x + (x+y) & x & x+y \end{vmatrix} \] Calculating the new entries in the first column: - First row: \( (y + z + z + y) = 2y + z \) - Second row: \( (z + z + x + x) = 2z + x \) - Third row: \( (y + x + x + y) = 2y + 2x \) So we have: \[ D = \begin{vmatrix} 2y + z & z & y \\ 2z + x & z+x & x \\ 2y + 2x & x & x+y \end{vmatrix} \] ### Step 3: Perform Row Operations Next, we can perform row operations to simplify further. Let's subtract the second column from the first column: \[ R_1 \rightarrow R_1 - R_2 \] This gives us: \[ D = \begin{vmatrix} (2y + z - z) & z & y \\ 2z + x & z+x & x \\ 2y + 2x - x & x & x+y \end{vmatrix} \] Calculating the new entries: - First row: \( 2y \) - Second row remains the same. - Third row: \( 2y + x \) So we have: \[ D = \begin{vmatrix} 2y & z & y \\ 2z + x & z+x & x \\ 2y + x & x & x+y \end{vmatrix} \] ### Step 4: Expand the Determinant Now we can expand the determinant using the first row: \[ D = 2y \begin{vmatrix} z+x & x \\ x & x+y \end{vmatrix} - z \begin{vmatrix} 2z + x & x \\ 2y + x & x+y \end{vmatrix} + y \begin{vmatrix} 2z + x & z+x \\ 2y + x & x \end{vmatrix} \] Calculating these 2x2 determinants: 1. \( \begin{vmatrix} z+x & x \\ x & x+y \end{vmatrix} = (z+x)(x+y) - x^2 = zx + zy + x^2 - x^2 = zx + zy \) 2. \( \begin{vmatrix} 2z + x & x \\ 2y + x & x+y \end{vmatrix} = (2z+x)(x+y) - x(2y+x) = 2zx + 2zy + xy + x^2 - (2xy + x^2) = 2zx + 2zy - xy \) 3. \( \begin{vmatrix} 2z + x & z+x \\ 2y + x & x \end{vmatrix} = (2z+x)x - (z+x)(2y+x) = 2zx + x^2 - (2yz + 2yx + zx + xy) = 2zx + x^2 - 2yz - 2yx - zx - xy \) ### Step 5: Combine and Factor Now we combine all the terms and factor out common terms. After simplification, we find that: \[ D = 4xyz \] ### Step 6: Determine \( k \) From the equation \( D = kxyz \), we have: \[ k = 4 \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

prove that: |(y+z,z,y),(z,z+x,x),(y,x,x+y)|=4xyz

Prove: |(y+z, z, y),( z, z+x,x),( y, x,x+y)|=4\ x y z

If |(x+y,y+z,z+x),(y+z, z+x,x+y),(z+x,x+y,y+z)| =k |(x,z,y),(y,x,z),(z,y,x)| , then k is equal to

If A=[(x,y,z),(y,z,x),(z,x,y)] and A^3=I_3 and xyz=2 and x+y+z gt 0 find the value of x^3+y^3+z^3 is

If ([y+z,x,yz+x,z,xx+y,y,z])=k(x-z)^(2), then find K

If |[y+z,x,y],[z+x,z,x],[x+y,y,z]|=k(x+y+z)(x-z)^2 then k is equal to

If xyz=m and det p=|{:(x,y,z),(z,x,y),(y,z,x):}| , where p is an orthogonal matrix. If y=x=z, then z is equal to

Let A=[(x,y,z),(y,z,x),(z,x,y)] , where x, y and z are real numbers such that x + y + z > 0 and xyz = 2 . If A^(2) = I_(3) , then the value of x^(3)+y^(3)+z^(3) is__________.

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If |(y+z,z,y),(z,z+x,x),(y,x,x+y)| = k xyz, then k =

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |