Home
Class 12
MATHS
If |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c...

If `|(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|=(a+b+c)^(lamda)`, then `lamda =`

A

1

B

2

C

3

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant problem given by \[ \left| \begin{array}{ccc} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{array} \right| = (a+b+c)^{\lambda} \] we will compute the determinant step by step. ### Step 1: Write down the determinant We start with the determinant: \[ D = \left| \begin{array}{ccc} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{array} \right| \] ### Step 2: Apply row operations We can simplify the determinant by performing row operations. Let's add the first row to the second and third rows: 1. \( R_2 \to R_2 + R_1 \) 2. \( R_3 \to R_3 + R_1 \) This gives us: \[ D = \left| \begin{array}{ccc} a-b-c & 2a & 2a \\ 2b + (a-b-c) & (b-c-a) + 2a & 2b + 2a \\ 2c + (a-b-c) & 2c + 2a & (c-a-b) + 2a \end{array} \right| \] Calculating the new rows: - For \( R_2 \): - First element: \( 2b + a - b - c = a + b - c \) - Second element: \( b - c - a + 2a = b - c + a \) - Third element: \( 2b + 2a = 2(b + a) \) - For \( R_3 \): - First element: \( 2c + a - b - c = a + c - b \) - Second element: \( 2c + 2a = 2(c + a) \) - Third element: \( c - a - b + 2a = c - b + a \) So we have: \[ D = \left| \begin{array}{ccc} a-b-c & 2a & 2a \\ a + b - c & b - c + a & 2(b + a) \\ a + c - b & 2(c + a) & c - b + a \end{array} \right| \] ### Step 3: Factor out common terms We can factor out \( a + b + c \) from the first column. This gives us: \[ D = (a + b + c) \left| \begin{array}{ccc} 1 & 2a & 2a \\ 1 & b - c + a & 2(b + a) \\ 1 & 2(c + a) & c - b + a \end{array} \right| \] ### Step 4: Simplify the determinant Now we can perform row operations again. Subtract the first row from the second and third rows: 1. \( R_2 \to R_2 - R_1 \) 2. \( R_3 \to R_3 - R_1 \) This gives us: \[ D = (a + b + c) \left| \begin{array}{ccc} 1 & 2a & 2a \\ 0 & (b - c + a - 2a) & (2(b + a) - 2a) \\ 0 & (2(c + a) - 2a) & (c - b + a - 2a) \end{array} \right| \] ### Step 5: Calculate the determinant Now we can simplify the determinant further. We can compute the determinant of the 2x2 matrix formed by the last two rows. After simplifying, we find that the determinant can be expressed as: \[ D = (a + b + c)^3 \] ### Step 6: Equate and find \( \lambda \) Now we have: \[ D = (a + b + c)^3 \] Given that \[ D = (a + b + c)^{\lambda} \] we can equate the exponents: \[ \lambda = 3 \] ### Final Answer Thus, the value of \( \lambda \) is \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

evaluate: |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|

If |(a-b-c, 2a, 2a),(2b, b-a-c, 2b),(2c, 2c, c-a-b)|=(a+b+c)(x+a+b+c^2) then thhe value of x is equal to (A) -2(a+b+c) (B) a+b+c (C) -(a+b+c) (D) 2(a+b+c)

Prove that: |[a-b-c, 2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3

If A= [{:(a-b-c, 2a,2a), (2b, b-c-a, 2b),(2c, 2c, c-a-b):}] = (a +b+c) (x +a +b+c)^(2), x ne 0 " and " a +b +c ne 0 , then x is equal to

Solve the determinant using properties |[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]| = (a+b+c)^3

det[[ prove that ,2aa-b-c,2a,2a2b,b-c-a,2b2c,2c,c-a-b]]=(a+b+c)^(3)

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|=(a+b+c)^(lamda), then l...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |