Home
Class 12
MATHS
|(1+x,2,3,4),(1,2+x,3,4),(1,2,3+x,4),(1,...

`|(1+x,2,3,4),(1,2+x,3,4),(1,2,3+x,4),(1,2,3,4+x)|` =

A

`x(x+10)`

B

`x^2(x+10)`

C

`x^3(x+10)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( D = \begin{vmatrix} 1+x & 2 & 3 & 4 \\ 1 & 2+x & 3 & 4 \\ 1 & 2 & 3+x & 4 \\ 1 & 2 & 3 & 4+x \end{vmatrix} \), we will perform a series of row and column operations to simplify the determinant. ### Step 1: Row Operations We will perform the operation \( R_1 - R_2 \) and \( R_1 - R_3 \) and \( R_1 - R_4 \) to simplify the first row. \[ R_1 \rightarrow R_1 - R_2 \] This gives: \[ \begin{vmatrix} x & 0 & 0 & 0 \\ 1 & 2+x & 3 & 4 \\ 1 & 2 & 3+x & 4 \\ 1 & 2 & 3 & 4+x \end{vmatrix} \] ### Step 2: Further Row Operations Next, we will perform \( R_2 - R_3 \) and \( R_2 - R_4 \). \[ R_2 \rightarrow R_2 - R_3 \] This gives: \[ \begin{vmatrix} x & 0 & 0 & 0 \\ 0 & x & 0 & 0 \\ 1 & 2 & 3+x & 4 \\ 1 & 2 & 3 & 4+x \end{vmatrix} \] ### Step 3: Column Operations Now, we will perform column operations to simplify the determinant further. We will perform \( C_2 \rightarrow C_2 - C_1 \). \[ C_2 \rightarrow C_2 - C_1 \] This gives: \[ \begin{vmatrix} x & 0 & 0 & 0 \\ 0 & x & 0 & 0 \\ 1 & 1 & 3+x & 4 \\ 1 & 1 & 3 & 4+x \end{vmatrix} \] ### Step 4: Expanding the Determinant Now we can expand the determinant along the first row: \[ D = x \cdot \begin{vmatrix} x & 0 & 0 \\ 1 & 3+x & 4 \\ 1 & 3 & 4+x \end{vmatrix} \] ### Step 5: Calculate the 3x3 Determinant Now we need to calculate the 3x3 determinant: \[ \begin{vmatrix} x & 0 & 0 \\ 1 & 3+x & 4 \\ 1 & 3 & 4+x \end{vmatrix} \] This determinant can be simplified to: \[ x \cdot \begin{vmatrix} 3+x & 4 \\ 3 & 4+x \end{vmatrix} \] ### Step 6: Calculate the 2x2 Determinant Calculating the 2x2 determinant: \[ \begin{vmatrix} 3+x & 4 \\ 3 & 4+x \end{vmatrix} = (3+x)(4+x) - (3)(4) = 12 + 7x + x^2 - 12 = x^2 + 7x \] ### Step 7: Final Expression Thus, we have: \[ D = x \cdot x \cdot (x^2 + 7x) = x^2(x^2 + 7x) = x^4 + 7x^3 \] ### Final Answer The value of the determinant is: \[ D = x^4 + 7x^3 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If |(3,2),(1,x)|-|(2x,3),(-2,1)|=|(4.1,1),(2,1)|^(2) , then x=______

If A={:((1,-3,4),(2,1,-2)):},B={:((-2,-4,5),(1,-1,3)):} and 5A-3B+2X=O, then X=

If |{:(1,x,x^(2)),(x,x^(2),1),(x^(2),1,x):}| =3 then the value of |{:(x^(3)-1,0,x-x^(4)),(0,x-x^(4),x^(3)-1),(x-x^(4),x^(3)-1,0):}| is

Observe the following pattern (1x2)+(2x3)=(2x3x4)/(3)(1x2)+(2x3)+(3x4)=(3x4x5)/(3)(1x2)+(2x3)+(3x4)+(4x5)=(4x5x6)/(3) and find the of (1x2)+(2x3)+(3x4)+(4x5)+(5x6)

If |{:(4,1),(2,1):}|^(2)=|{:(3,2),(1,x):}|-|{:(x,3),(-2,1):}| , then the value of x is :

If Delta(x)=|{:(4x-4,(x-2)^2,x^3),(8x-4sqrt2,(x-2sqrt2)^2,(x+1)^3),(12x-4sqrt3,(x-2sqrt3)^2,(x-1)^3):}| . Then the coefficient of x in Delta(x) is

If the circle x^(2)+y^(2)=a^(2) intersects the hyperbola xy=c^(2) in four points P (x_(1) ,y_(1)) Q (x_(2), y_(2)) R (x_(3) ,y_(3)) S (x_(4) ,y_(4)) then 1) x_(1)+x_(2)+x_(3)+x_(4)=2c^(2) 2) y_(1)+y_(2)+y_(3)+y_(4)=0 3) x_(1)x_(2)x_(3)x_(4)=2c^(4) 4) y_(1)y_(2)y_(3)y_(4)=2c^(4)

If _(i-1)(x_(i)^(2)+y_(i)^(2))<=2x_(1)x_(3)+2x_(2)x_(4)+2y_(2)y_(3)+2y_(1)y_(4)sum_(i-1)^(4)(x_(i)^(2)+y_(i)^(2))<=2x_(1)x_(3)+2x_(2)x_(4)+2y_(2)y_(3)+2y_(1)y_(4) the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)),(x_(4),y_(4)) are the vertices of a rectangle collinear the vertices of a trapezium none of these

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. |(1+x,2,3,4),(1,2+x,3,4),(1,2,3+x,4),(1,2,3,4+x)| =

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |