Home
Class 12
MATHS
|(1+a,1,1),(1,1+b,1),(1,1,1+c)|=...

`|(1+a,1,1),(1,1+b,1),(1,1,1+c)|= `

A

`1+suma`

B

`1+sum(1)/a`

C

`abc [1+sum(1)/a]`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( D = \begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} \), we will follow these steps: ### Step 1: Rewrite the Determinant We start with the determinant: \[ D = \begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} \] ### Step 2: Apply Row Operations We can simplify the determinant by performing row operations. Specifically, we can subtract the third row from the first and second rows: \[ R_1 \rightarrow R_1 - R_3 \quad \text{and} \quad R_2 \rightarrow R_2 - R_3 \] This gives us: \[ D = \begin{vmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 1 & 1 & 1+c \end{vmatrix} \] ### Step 3: Expand the Determinant Now we can expand the determinant using the first column: \[ D = a \begin{vmatrix} b & 0 \\ 1 & 1+c \end{vmatrix} \] Calculating the 2x2 determinant: \[ \begin{vmatrix} b & 0 \\ 1 & 1+c \end{vmatrix} = b(1+c) - 0 = b(1+c) \] Thus, \[ D = a \cdot b(1+c) \] ### Step 4: Final Expression Therefore, the final expression for the determinant is: \[ D = ab(1+c) \] ### Summary of Steps: 1. Rewrite the determinant. 2. Apply row operations to simplify. 3. Expand the determinant using the first column. 4. Calculate the resulting 2x2 determinant. 5. Combine the results to get the final expression.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

if the value of the determinant |{:(a,,1,,1),(1,,b,,1),(1,,1,,c):}| is positivie then (a,b,c lt 0)

Suppose a,b, c epsilon R on abc!=0 . Let Delta=|(1+a,1,1),(1+b,1+2b,1),(1+c,1+c,1+3c)| If Delta=0 , then 1/a+1/b+1/c is equal to

Let A= [{:(,1,1,1),(,1,1,1),(,1,1,1):}] , B= [{:(,2,-1,-1),(,-1,2,-1),(,-1,-1,2):}] and C=3A+7B

If a,b,c ne 0 and a+b+c=0 then the matrix [(1+(1)/(a),1,1),(1,1+(1)/(b),1),(1,1,1+(1)/(c))] is

Prove: |(1,a, b c),(1,b ,c a),(1,c ,a b)|=|(1,a ,a^2),( 1,b,b^2),( 1,c,c^2)|

Prove that : Det[[1+a,1,1],[1,1+b,1],[1,1,1+c]]=abc(1+1/a+1/b+1/c)

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. |(1+a,1,1),(1,1+b,1),(1,1,1+c)|=

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |