Home
Class 12
MATHS
The value of the determinant |(1+a,1,1...

The value of the determinant
`|(1+a,1,1),(1,1+a,1),(1,1,1+a)|` is

A

`a^3(1-2/a)`

B

`a^3(1+3/a)`

C

`a^3(1-3/a)`

D

`a^3(1+2/a)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} 1 + a & 1 & 1 \\ 1 & 1 + a & 1 \\ 1 & 1 & 1 + a \end{vmatrix} \] we will expand it along the first row. ### Step 1: Expand the Determinant Using the first row for expansion, we have: \[ D = (1 + a) \begin{vmatrix} 1 + a & 1 \\ 1 & 1 + a \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & 1 + a \end{vmatrix} + 1 \begin{vmatrix} 1 & 1 + a \\ 1 & 1 \end{vmatrix} \] ### Step 2: Calculate the 2x2 Determinants Now, we calculate each of the 2x2 determinants: 1. For the first determinant: \[ \begin{vmatrix} 1 + a & 1 \\ 1 & 1 + a \end{vmatrix} = (1 + a)(1 + a) - (1)(1) = (1 + a)^2 - 1 = a^2 + 2a \] 2. For the second determinant: \[ \begin{vmatrix} 1 & 1 \\ 1 & 1 + a \end{vmatrix} = (1)(1 + a) - (1)(1) = 1 + a - 1 = a \] 3. For the third determinant: \[ \begin{vmatrix} 1 & 1 + a \\ 1 & 1 \end{vmatrix} = (1)(1) - (1)(1 + a) = 1 - (1 + a) = -a \] ### Step 3: Substitute Back into the Determinant Now substituting these values back into the expression for \(D\): \[ D = (1 + a)(a^2 + 2a) - 1(a) + 1(-a) \] This simplifies to: \[ D = (1 + a)(a^2 + 2a) - a - a \] \[ D = (1 + a)(a^2 + 2a) - 2a \] ### Step 4: Expand the Expression Now, we expand \((1 + a)(a^2 + 2a)\): \[ D = a^2 + 2a + a^3 + 2a^2 - 2a \] Combining like terms: \[ D = a^3 + 3a^2 \] ### Final Result Thus, the value of the determinant is: \[ D = a^3 + 3a^2 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

The value of the determinant |(-1,1,1),(1,-1,1),(1,1,-1)| is equal to

What is the value of the determinant ? |(1,1,1),(1,1+xyz,1),(1,1,1+xyz)| ?

If the value of the determinant |{:(a,1,1),(1,b,1),(1,1,c):}| is positive then

if the value of the determinant |{:(a,,1,,1),(1,,b,,1),(1,,1,,c):}| is positivie then (a,b,c lt 0)

If the value of the determinant |(a,1,1),(1,b,1),(1,1,c)| is positive, where a ne be ne c , then the value of abc.

If the lvalue of the determinants |(a,1,1),(1,b,1),(1,1,c)| is positive then:

If alpha , beta and gamma the roots of the equation x^2(px + q) = r(x + 1). Then the value of determinant |(1+alpha,1,1),(1,1+beta,1),(1,1,1+gamma)| is (A) alpha beta gamma (b) 1+1/alpha+1/beta+1/gamma (c) 0 (d) non of these

The value of the determinant |{:(1,0,-1),(a,1,1-a),(b,a,1+a-b):}| depends on :

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. The value of the determinant |(1+a,1,1),(1,1+a,1),(1,1,1+a)| is

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |