Home
Class 12
MATHS
If |(1+a,1,1),(1+b,1+2b,1),(1+c,1+c,1+3c...

If `|(1+a,1,1),(1+b,1+2b,1),(1+c,1+c,1+3c)|` = 0 , where , ` a ne 0 , b ne 0 , c ne 0 and a^(-1) + b^(-1) +c^(-1)` is

A

4

B

`-3`

C

`-2`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation given by \[ \begin{vmatrix} 1 + a & 1 & 1 \\ 1 + b & 1 + 2b & 1 \\ 1 + c & 1 + c & 1 + 3c \end{vmatrix} = 0 \] we will follow these steps: ### Step 1: Simplify the Determinant We will perform column operations to simplify the determinant. Specifically, we will subtract the third column from the first and the second columns. \[ C_1 \rightarrow C_1 - C_3 \quad \text{and} \quad C_2 \rightarrow C_2 - C_3 \] This gives us: \[ \begin{vmatrix} (1 + a - 1) & (1 - 1) & 1 \\ (1 + b - 1) & (1 + 2b - 1) & 1 \\ (1 + c - (1 + 3c)) & (1 + c - (1 + 3c)) & (1 + 3c - 1) \end{vmatrix} \] This simplifies to: \[ \begin{vmatrix} a & 0 & 1 \\ b & 2b & 1 \\ -c & -2c & 3c \end{vmatrix} \] ### Step 2: Expand the Determinant Now we will expand the determinant along the first column: \[ = a \begin{vmatrix} 2b & 1 \\ -2c & 3c \end{vmatrix} - 0 + 1 \begin{vmatrix} b & 2b \\ -c & -2c \end{vmatrix} \] Calculating the first determinant: \[ = a (2b \cdot 3c - 1 \cdot (-2c)) = a (6bc + 2c) = a (6bc + 2c) \] Calculating the second determinant: \[ = 1 (b \cdot (-2c) - 2b \cdot (-c)) = -2bc + 2bc = 0 \] Thus, we have: \[ = a(6bc + 2c) = 0 \] ### Step 3: Set the Expression to Zero Since \( a \neq 0 \), we must have: \[ 6bc + 2c = 0 \] Factoring out \( c \): \[ c(6b + 2) = 0 \] Since \( c \neq 0 \), we have: \[ 6b + 2 = 0 \implies b = -\frac{1}{3} \] ### Step 4: Substitute Back to Find \( a^{-1} + b^{-1} + c^{-1} \) Now we need to find \( a^{-1} + b^{-1} + c^{-1} \): \[ a^{-1} + b^{-1} + c^{-1} = \frac{1}{a} + \frac{1}{-\frac{1}{3}} + \frac{1}{c} \] This simplifies to: \[ = \frac{1}{a} - 3 + \frac{1}{c} \] ### Step 5: Conclusion Since we do not have specific values for \( a \) and \( c \), we cannot simplify further without additional information. However, we can conclude that: \[ a^{-1} + b^{-1} + c^{-1} = -3 + \frac{1}{a} + \frac{1}{c} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If ane0, bne0,cne0 " "and " |{:(1+a,1,1),(1+b,1+2b,1),(1+c,1+c,1+3c):}| =0 the value of |a^(-1)+b^(-1)+c^(-1)| is equal to

If A=[[1, 0, 0], [a, 1, 0], [b, c, 1]] , then A^(-1)=

If the value of the determinant |(a,1,1),(1,b,1),(1,1,c)| is positive, where a ne be ne c , then the value of abc.

If a != 0, b!= 0, c!= 0 , then |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| is equal to

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If |(1+a,1,1),(1+b,1+2b,1),(1+c,1+c,1+3c)| = 0 , where , a ne 0 , b n...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |